COORDINATED HIGHWAYS ACTION RESPONSE TEAM
STATE HIGHWAY ADMINISTRATION

R1B2 Servers Detailed Design

Contract DBM-9713-NMS
TSR # 9901961

Document # M362-DS-006R0

~
R

May 26, 2000
By

Computer Sciences Corporation and PB Farradyne Inc.

J

|||||||‘|
sl

Revision Description Pages Affected Date
0 Initial Release All May 26, 2000
R1B2 Servers Detailed Design Rev. 0 04/17/01

Table of Contents

e s 1-1]|
TR 1-1]
TP 1-1]
(.3 S0P .ttt ettt sttt ettt anenae 1-1]
I el e 1-1|
T Y R 1-2|
TR N 1-2|
R KeY DESION CONCEPLSuvveeiiiieeeiieeeieieeeeeeeeeeeeeeeeeeaeeeaeeeeneeeeeeas 2-1]
I e A g 2-1]
R.2 Operations LOGUING......cocvvireiririiiirieiseiiisi sttt 2-2]
R.3 Service Application FrameWO Kccccooveviiiiiieiiiiieiceeieeeteeieeee et erenns 2-2|
R.4 Service Application MaiNteNANCEccovivieiriieiiiisissie s 2-3)
R.5 Event Channel FAUIt TOIBIANCEcvoueveeeieeeeeeeeesesreeseeteseeeseeeeseer s r e sn s 2-3|
P66 ODJECt PUBIICATION.........cviveeieeeiiceeveeeee ettt ee et eensteensnereenareaeas 2-4|
R.7 PSS BY ValUC.....ooieeeieeieeeseeeeeeeee s 2-4)
R.8 DAtabase ACCESS........ciiiriieirsiriisiriisissssisssss s es st srss s 2-2|
P.9 Field COMMUNICATIONSc.ovoeoeereeeeseneeseseeseseeseeensesenseseenens 2-2|
p.10 S S a1 T 2-2|
p.11 Recorded Voice HaNAIINGcoooveveeveiieieieieeeeeeeeeeeeeeeeee e 2-3|
R.12 PACKAGING ..ottt ettt ettt a et et et enareneenene 2-4|
B Package DeSIONS ..oceeveieeieieeiiieieeeeeeeee e es s 3-1
B.l CHART2SEIVICE ..ooiieiiiiieiiiiitiitt ittt 3-1]

S T v, 3-1]
B.1.2 SEQUENCE DIAGIAMSvevvevvieveeveveteeveieeeevetevsieeeeteteenseeeseseseenstsesesesesnssenssseresssseresseres 3-3|
e e N 3-5|
B.2.1 CIASSES.....iursiriieiriieisiisiisi sttt 3-5|
B.2.2 SEOUENCE DIAGIAMSvveeeeeeeeeeeseeeeeeseeeeseeeeenseeenseensenseeeeanenesesnenssneeesesneesnees 3-9|

R1B2 Servers Detailed Design Rev. 0 i 04/17/01

B3 CORBAULITIESoooooooeeooeeeoeeoeeeeeeeeeeeeeeeneneneeseensneeennenenenseseensnsneesenenenenenenenss 3-15|

B.3. L CLASSES........oveeeeeeeeeeeeeeeeeeeeeeeeeteeeeeeeeeeteeeeeeessenseeensesesenseeensesenessnsensnsnsesensesneesnens 3-15|
B4 DEVICRULILY .ooosieeeieisieesiesi e 3-17|
B4 1 CIASSES ...ttt ettt tet ettt e et ese et tetetereeneteteterereeratetereaenanas 3-17|
B.4.2 SeqUENCE DIAGIAMSvvuieiceiisceesiessissesessssssessessessssssasessssssssssssssessnsssssssassnsesassneans 3-21]
B.5 DictionaryMOQUIE..........ooveivieieesieieisecs s 3-29]
B.5.1 CLASSES.....c.eeeieeeereeeereeseeeseersesseeseeeseeeneeseseesesensesessesesesseeessesesessnsssnsnssesessssssnsssees 3-29|
B.5.2 SeqUENCE DIAGIAMSvveeveeeceeeieieeieeessesesiesi s 3-32]
B.6 DMSCONIOIMOAUIL. ..ot eeeeeeeeeteeee e e eeeensennensneenneans 3-42|
B.6.1 CIASSESveeiereieisiesseesissssssissssesssessessesssssssssssesssssssssnsesasssasansesssssessnsstasssssnsssasnens 3-42|
B.6.2 SCOUENCE DIAGIAMScoeeeeeeeeseeeseeeeseseensneenenseeesneeneneneensneneseeeesesnenesnens 3-55|
B.7 DMSULIILY ..o 3-92|
A 3-92|
B.8 HARCONIIOIMOAUIE..........ccoovieieeieieeeeieteeeeeteeeeetseeseeeerseesener s sesaeeeesenseesesenanas 3-96|
B.8.1 CIASSESovureeseiessisssessesesessissssesssessessasssssssinssssssssassnsssasssasansstssssasansstasnsssassssasnsns 3-96
B.8.2 SeqUENCE DIAGIAMScv.vieereiessieeeeiscessssesessessessseseeseeessssseessns st snscsessnsessnsssessnsesanes 3-104
B.9 H A R UL Y Lottt ettt e st e et e e et e e ehseesseeabeeenseeshsesabeeabseenssesbseanreesnneas 3-133]
N 3-133]
B.9.2 SEQUENCE DIAGIAMScvvuvevieiveeiieveeieieteeiet ettt esasteresnatereereresnareneas 3-138|
B.10 N O Lo s R 3-140
S Y 3-140|
B.11 MessageLibraryMOodUlE.o..ciiviiriciieceeccs s 3-144]
S 3-144|
B.11.2 Sequence DIAQramScocovcsrirceisessssissessessssssessasinessssisssssnsssssssassnsesssssssassssnes 3-148|
B.12 PlaNMOAUIE ... 3-163|
B.12.1 CIASSES ...ttt st eeeeeet s e eeeteeeeeee et seeeneenseeanensenseeeneneanes 3-163|
B.12.2 SEQUENCE DIAGIAMS ...t eess et sesseesesneeseseesesensesessesesensesessesneasas 3-166]|
B.13 RESOUICESMOTUIR ...t n s e s en s s e sesenseseseesnsassesess 3-178|
B.13.1 CIASSES oottt 3-178|
B.13.2 SequenCe DIAQIaMScovcireeieirrsssissessessssssssssinesssssssssnsssssssssssnssssssssassssssnes 3-181]
B.14 SHAZAMOCONIO] .o 3-193

R1B2 Servers Detailed Design Rev. 0 iii 04/17/01

e Y 3-193|
B.14.2 SEQUENCE DIAGIAMSc..ooeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeensereeeenseeeeeensenseeenseesnes 3-199|

B.15 SHAZAMULIITY L.ttt e st e sbaesbreabaesbsesbaesbeesnnaeas 3-210]
R O T 3-210]

B.16 SYSEEMINTEITACES.vevvcvieieeieeeeeeeeee ettt teeteeneteeteenennerena 3-211|
e Y 3-211|

B.17 TrAFFICEVENTIMOUUIC........coovoeeeeeeeeeeeeeeeeeeee e e s enenseesnenesenseeseenesneane 3-263|
R T 3-263|
B.17.2 SeqUENCE DIAGIAMScvevieiireveeieiieieieteteeeeeetete ettt eesene et tetesenesetereneenanas 3-272|

B.18 TTSCONEIOl oo 3-292]
B.18.1 ClIASSESocvusiieiesceeiieesessecestssse st essstssses s s st et snest s et sns st s sns et sn st es st et s e s s seranas 3-292|
B.18.2 SEQUENCE DIAGIAMS ...t eess et ses s eessreeseseesesenseseseesesessesesenseeasas 3-297|

B.19 UserManagementMOAUIE ..o 3-308|
S O E o 3-308|
B.19.2 Sequence DIagramscoocirieeririisrisssssessssssessesssessssssssssssssasssassssssssssassssesnes 3-311]

B.20 UBEY oo 3-328]
O 3-328|
B.20.2 SeqUENCE DIAUIAMS ..ovvveveeeeceseceseessceesees oo 3-337]

Acronyms

References

Appendix A — Functional Rights

Appendix B - Glossary

R1B2 Servers Detailed Design Rev. 0 iv 04/17/01

Table of Figures

[Figure 1. CHART2ServiceClasses (Class Diagram).............c.c.cveveueverereerireeereeenirenirereensrennans 3-1]
Figure 2. CHART2Service:Shutdown (Sequence DIagram).............ocoeeeeeeeeeeeeeeeeeereervenreenea. 3-3|
Figure 3. CHART2Service:Startup (Sequence Diagram)c.oooeeeeeeeeereeeeeeneeeseeesensrenaennns 3-4|
Figure 4. CommLogModuleClassDiagram (Class DIiagram).............ccouvcveeoveervorecereerrensnnene. 3-5|
Figure 5. CommLogModule:addEntries (Sequence Diagram)cceveveveeverveeerererreraensrennan. 3-9|
Figure 6. CommLogModule:destroy (Sequence Diagram).......c..ococoirecesreeieisessressisesssesseanees 3-10|
Figure 7. CommLogModule:getEntries (Sequence Diagram)ccccoeveveeeveeieerenireirennane, 3-11|
Figure 8 CommLogModule:initialize (Sequence DIagram)..........c.couueoeoieeneninenenenseneeenes 3-12]
Figure 9. CommLogModule:runlteratorCleanup (Sequence Diagram)c..cccoeveevrevveene... 3-13|
Figure 10 CommLogModule:shutdown (Sequence Diagram)ooveeveververeeevirerensreennnn. 3-14|
Figure 11. CORBACIasses (Class DIagram)ccccueeererevireeerereerireierereererenerereenasenssereenans 3-15|
Figure 12. DeviceULtility (C1ass DIAGIAM)coweeeeueeeeeeeeeeeeeerseeeeereeensreenseseeensreessesneeesneeeseene 3-18|
Figure 13. ArbQueueProcessing:addEntry (Sequence Diagram)..............coceeeeeeeseeeeerseveennnss 3-21|
Figure 14. ArbQueueProcessing:asyncMsgChanged (Sequence Diagram)............................... 3-22)
Figure 15. ArbQueueProcessing:evaluateQueue (Sequence Diagram)...........c.cccevevveveeverrereenanes 3-23|
Figure 16. ArbQueueProcessing:interrupt (Sequence Diagram).........ccooeceeirecsrersiseserensinees 3-24
Figure 17. ArbQueueProcessing:removeEntry (Sequence Diagram)ccccccccvevevereerennanenn. 3-25|
Figure 18. ArbQueueProcessing:requestFailed (Sequence Diagram)...........ccccovvvevrcriennnene. 3-26|
Figure 19. ArbQueueProcessing:requestSucceeded (Sequence Diagram)..............c.c.cuouue.... 3-27|
Figure 20. ArbQueueProcessing:resume (Sequence Diagram)............cc.cveveveverereevererversrernnnn. 3-28|
Figure 21. DictionaryModClassDiagram (Class Diagram).............c.c.ccceverereevereverereensrernenarennn. 3-29|
Figure 22. DictionaryModule:initialize (Sequence Diagram)..............cooeeeeeeeereeeweeveverrserrenns 3-32|
Figure 23. DictionaryModule:shutdown (Sequence Diagram)cooooeeeeeeeesceeeerseenrerass 3-33]
Figure 24. Dictionarylmpl:addApprovedWordList (Sequence Diagram)................................. 3-34
Figure 25. Dictionarylmpl:addBannedWordList (Sequence Diagram)ccccccvevvevevrevennan..s 3-35|
Figure 26. Dictionarylmpl:checkForBannedWords (Sequence Diagram)........c.cococvvevesrenenianees 3-36]
Figure 27. Dictionarylmpl:getApprovedWords (Sequence Diagram).............ccccccccveverrererennane. 3-37|
Figure 28. Dictionarylmpl:getBannedWords (Sequence Diagram)...........ccccocoeeevrencvscnnennnes 3-38|
Figure 29. Dictionarylmpl:PerformApprovedWordsCheck (Sequence Diagram)..................... 3-39|

R1B2 Servers Detailed Design Rev. 0 v 04/17/01

Figure 30. Dictionarylmpl:removeApprovedWordList (Sequence Diagram) 3-40|
Figure 31. Dictionarylmpl:removeBannedWordList (Sequence Diagram).............................. 3-41|
Figure 32. DMSControlClassDiagram (Class Diagram)..............c.cvevvuevererveveeevererensrersrernsnans 3-42|
Figure 33. QueueableCommandClassDiagram (Class Diagram)..........co.eceevrecsreseessresessesnenes 3-52]
Figure 34. DMSControlModule:ActivatetHARNOotice (Sequence Diagram)c.cooceeveveeeee. 3-55|
Figure 35. DMSControlModule:BlankFromQueue (Sequence Diagram)ccocuevue..... 3-56|
Figure 36. DMSControlModule:BlankSign (Sequence Diagram)c.cocooeceevveiiveeseisceeee.. 3-58]
Figure 37. DMSControlModule:BlankSignImpl (Sequence Diagram).........c..c.cccceveerevieeneneees 3-59)
Figure 38. DMSControlModule:BlankSignNow (Sequence Diagram)cccccveveveverennene. 3-60|
Figure 39. DMSControlModule:CheckResourceConflict (Sequence Diagram)...............c........ 3-61]
Figure 40. DMSControlModule:CreateDMS (Sequence Diagram)cocoeeeeverrveverreennee. 3-62|
Figure 41. DMSControlModule:DeactivateHARNOotice (Sequence Diagram).......................... 3-63|
Figure 42. DMSControlModule:GetConfiguration (Sequence Diagram).................c..cvvee.... 3-64|
Figure 43. DMSControlModule:GetControlledResources (Sequence Diagram)..............oc....... 3-65]
Figure 44. DMSControlModule:GetStatus (Sequence Diagram)c.cocooiecsrererisisssinsnnees 3-66)
Figure 45. DMSControlModule:HandleOpStatus (Sequence Diagram)..............coccocvevereuere... 3-68|
Figure 46. DMSControlModule:HasControlledResources (Sequence Diagram) 3-69)
Figure 47. DMSControlModule:Initialize (Sequence Diagram)........coccoceceveevresresresresrerrenrenees 3-70
Figure 48. DMSControlModule:PolINow (Sequence Diagram)...............ccvevevevererevenerererennne, 3-71]
Figure 49. DMSControlModule:PolINowImpl (Sequence Diagram)ococcvvecericsrerecennanee, 3-72|
Figure 50. DMSControlModule:PutDMSInMaintMode (Sequence Diagram).......................... 3-74|
Figure 51. DMSControlModule:PutDMSOnline (Sequence Diagram)c..cocoeveveenee.... 3-76|
Figure 52. DMSControlModule:RemoveDMS (Sequence Diagram)..............coeveveevevererivennnne. 3-77|
Figure 53. DMSControlModule:ResetController (Sequence Diagram).........o.coceeevveceresrieennenes 3-79)
Figure 54. DMSControlModule:RunCheckCommLossTask (Sequence Diagram)................... 3-80)
Figure 55. DMSControlModule:RunCheckForAbandonedDMSTask (Sequence Diagram).....3-81|
Figure 56. DMSControlModule:RunPolIDMSTask (Sequence Diagram)c.ccooccovceerrceeneees 3-82]
Figure 57. DMSControlModule:SetConfiguration (Sequence Diagram)cccocceerevevereeee., 3-84]
Figure 58. DMSControlModule:SetMessage (Sequence Diagram)..............ccocoveveeveveveverenenne. 3-85|
Figure 59. DMSControlModule:SetMessageFromQueue (Sequence Diagram)...............c........ 3-86)
Figure 60. DMSControlModule:SetMessageFromQueuelmpl (Sequence Diagram) 3-87
Figure 61. DMSControlModule:SetMessagelmpl (Sequence Diagram)cccceveveueenen.... 3-88|

R1B2 Servers Detailed Design Rev. 0 vi 04/17/01

Figure 62. DMSControlModule:Shutdown (Sequence Diagram)o....coeeeeeeeeeewrvevenreenren. 3-89|
Figure 63. DMSControlModule: TakeDMSOffline (Sequence Diagram)..............cccocuouuu...... 3-91|
Figure 64. DMSULility (C1ass DIaQram)coveueverereoreuevererrerseensererereensessrereessseenssereenns 3-92|
Figure 65. HARControlModule (Class Diagram)cococeirecsresiesseseessresessessssessessssssesessens 3-96)
Figure 66. HARControlModule:activateMessageNotifiers (Sequence Diagram).................... 3-104]
Figure 67. HARControlModule:addEntry (Sequence Diagram).............ocooeeeeeeceereveeeecennn. 3-105|
Figure 68. HARControlModule:blank (Sequence Diagram) ..oo..cooceoreerrccessceonrceesrceerrcesrrnn. 3-106
Figure 69. HARControlModule:blankImpl (Sequence Diagram)........coooevveveeveveriereerenennee. 3-107|
Figure 70. HARControlModule:Shutdown (Sequence Diagram)...............ccccocevvevrrerercrennnne., 3-108]
Figure 71. HARControlModule:createHAR (Sequence Diagram)cccoecerecsscsericearaee. 3-109|
Figure 72. HARControlModule:deactivateMessageNotifiers (Sequence Diagram)................ 3-110|
Figure 73. HARControlModule:deleteSlotMessage (Sequence Diagram)c............ 3-111|
Figure 74. HARControlModule:evaluateQueue (Sequence Diagram)cccecvvvevenee... 3-112]
Figure 75. HARControlModule:getConfiguration (Sequence Diagram)........cc.ccocoeesrecseennenes 3-113|
Figure 76. HARControlModule:getStatus (Sequence Diagram).........coocoveeeceirecsrisseesenesssnees 3-114]
Figure 77. HARControlModule:Initialize (Sequence Diagram)ooocoeweeeeeeceeeeeeceererrnnn. 3-115|
Figure 78. HARControlModule:PutinMaintenanceMode (Sequence Diagram)...................... 3-116]
Figure 79. HARControlModule:PutOnline (Sequence Diagram)c.ccoooeveevrevevresrenrereenen, 3-117]
Figure 80. HARControlModule:removeEntry (Sequence Diagram)cccccceveverereeneneee.. 3-118|
Figure 81. HARControlModule:removeHAR (Sequence Diagram).........ccooceeeeserecerinecnaee, 3-119]
Figure 82. HARControlModule:reset (Sequence DIiagram)............ooeeeeeeeeeeeneeenreerrereenrees 3-120|
Figure 83. HARControlModule:setConfiguration (Sequence Diagram)cccocoouuu....... 3-121|
Figure 84. HARControlModule:SetDefaultHeader (Sequence Diagram)................................ 3-122|
Figure 85. HARControlModule:setDefaultMessage (Sequence Diagram)..........cccoceveceevenneees 3-123|
Figure 86. HARControlModule:setMessage (Sequence Diagram).........oocovcerecsisecesrenesnee, 3-124|
Figure 87. HARControlModule:setMessagelmpl (Sequence Diagram)coocuevenene.... 3-126|
Figure 88. HARControlModule:setTransmitterOff (Sequence Diagram).........c.ccoccvecceeeenee. 3-127]
Figure 89. HARControlModule:setTransmitterOn (Sequence Diagram)coccccceecveneeee.. 3-128|
Figure 90. HARControlModule:setup (Sequence Diagram)............ccceeveverevereeveninererereennnnn, 3-129|
Figure 91. HARControlModule:storeSlotMessage (Sequence Diagram)ccccovevevevenane. 3-130]
Figure 92. HARControlModule:TakeOffline (Sequence Diagram)...........occoeeervveveeencen. 3-131|
Figure 93. HARControlModule:UpdateHARMessageDate Time (Sequence Diagram)........... 3-132|

R1B2 Servers Detailed Design Rev. 0 vii 04/17/01

Figure 94. HARULility (C1aSS DIBGIAM)c.voveeveeeeeeseeeeeeeeeeeeeeeveeeeeseeensneennneeneesnennsneessens 3-133|

Figure 95. HARULility:PushAudio (Sequence Diagram).............cooooeeooeeeeeeereeeeeesersevenennne. 3-138|
Figure 96. HARUTMility:StoreAudioClip (Sequence Diagram)ooceveeverervererenererrenirennnn. 3-139|
Figure 97. JavaClasses (Class DIiagram)oocieireceirsrisesrssisssessssesesesssssnsssssssessessssessenes 3-140]
Figure 98. MessageL ibraryModuleClasses (Class Diagram).........cocoveceirecsresssssssenesssnees 3-144]
Figure 99. MessageL ibraryModule:CreateDMSStoredMessage (Sequence Diagram) 3-148|
Figure 100. MessageL ibraryModule:CreateHARStoredMessage (Sequence Diagram)......... 3-150]
Figure 101. MessageL ibraryModule:CreateMessageL ibrary (Sequence Diagram) 3-151]
Figure 102. MessageL ibraryModule:DeleteMessageL ibrary (Sequence Diagram) 3-152|
Figure 103. MessageL ibraryModule:DeleteStoredMessage (Sequence Diagram).................. 3-153]
Figure 104. MessageL ibraryModule:Initialize (Sequence Diagram).............ooceervveveuencen.. 3-154|

Figure 105. MessageL.ibraryModule:IsMessageLibraryUsedByAnyPlan
(SEQUENCE DIOTAM) ..titerieirieiteiesieeeteetstesteessestsesstessesesee st etsetseses et steesteseretses et it sesetseserseesaeas 3-155]

Figure 106. MessageL ibraryModule:IsStoredMessageUsedByAnyPlan
IR 10 T —— 3-156]

Figure 107. MessageL ibraryModule:ModifyDMSStoredMessage (Sequence Diagram)....... 3-157|
Figure 108. MessageLibraryModule:ModifyHARStoredMessage (Sequence Diagram)....... 3-158]

Figure 109. MessageL ibraryModule:SetLibraryName (Sequence Diagram) 3-159)
Figure 110. MessageLibraryModule:Shutdown (Sequence Diagram).................c.c.cvvvee..... 3-160|
Figure 111. MessageL ibraryModule:ViewDMSStoredMessage (Sequence Diagram)............ 3-161]
Figure 112. MessageLibraryModule:ViewHARStoredMessage (Sequence Diagram) 3-162]
Figure 113. PlanModuleClasses (C1ass DIagram)...............occoeeeeeeeeeeeeereeeeeeeseeseeesensenseeensens 3-163|
Figure 114. PlanModule:Addltem (Sequence Diagram)..............coeceveveuevereeensenersrrensrernnnn. 3-166|
Figure 115. PlanModule:AddPlan (Sequence Diagram).........cccoceereeereeerecsssreesssseesssresessens 3-167|
Figure 116. PlanModule: Initialize (Sequence Diagram)........c.coceircsrersisessssesesssssessesessnees 3-168|
Figure 117. PlanModule:PlanlsUsingObject (Sequence Diagram)............c.ocoveceeveveverenennne.. 3-169|
Figure 118. PlanModule:PlanltemIsUsingObject (Sequence Diagram)cccocccvevenveee. 3-170]
Figure 119. PlanModule:Removeltem (Sequence Diagram)oc..cceeceereveveeiieresieisienee, 3-171]
Figure 120. PlanModule:RemovePlan (Sequence Diagram)coveveveverereevenererererennnes. 3-172|
Figure 121. PlanModule:RemovePlanFromFactory (Sequence Diagram)cccccoceveeenease. 3-173|
Figure 122. PlanModule:SetPlanltemData (Sequence Diagram).............ocoeeeweeeveeeverrvcen. 3-174|
Figure 123. PlanModule:SetPlanltemName (Sequence Diagram)..............occoooeeecverseveeenanen.. 3-175|

R1B2 Servers Detailed Design Rev. 0 viii 04/17/01

Figure 124. PlanModule:SetPlanName (Sequence DIagram)coeeeeeeeereeeweeevenrrren. 3-176|
Figure 125. PlanModule:Shutdown (Sequence Diagram)oo.ooeoeeeereeeeeereeeeeensereerennn. 3-177|
Figure 126. ResourceClasses (Class DIagram)c.c.cveveueverereereeeriuererereensenerereensrensnnns 3-178|
Figure 127. ResourcesModule:ChangeUser (Sequence Diagram).........coeoeceeesrecsesrecessnnenes 3-181]
Figure 128. ResourcesModule:ForceLogout (Sequence Diagram)........coooocevveirecseeereceseennens 3-182|
Figure 129. ResourcesModule:GetControlledResources (Sequence Diagram)........................ 3-183|
Figure 130. ResourcesModule:Getl oginSessions (Sequence Diagram)ccccocevcevceeeeneee. 3-184|
Figure 131. ResourcesModule:GetNumLoggedInUsers (Sequence Diagram)........................ 3-185]
Figure 132. ResourcesModule:Initialize (Sequence Diagram)ccccovevevevevevenirerereernnnne, 3-186)|
Figure 133. ResourcesModule:lsUserLoggedIn (Sequence Diagram)ccccocevevecerececnace. 3-187|
Figure 134. ResourcesModule: LoginUser (Sequence Diagram)o.ooeeeeeeerrvevenrcnnen. 3-188|
Figure 135. ResourcesModule:LogoutUser (Sequence Diagram)cocoeeeeeevevevevennr.. 3-189|
Figure 136. ResourcesModule:OperationsCenterImplinitialization (Sequence Diagram)3-190|
Figure 137. ResourcesModule:Shutdown (Sequence Diagram)coccoceveievsvesecsresessennenes 3-191]
Figure 138. ResourcesModule:TransferSharedResources (Sequence Diagram) 3-192]
Figure 139. SHAZAMCONtrol (Class DIagram)c.oo.ooeeeeeeeeeeeeeeeeeeereereensesensessenreees 3-193|
Figure 140. SHAZAMControlModule:activateSHAZAM (Sequence Diagram) 3-199)
Figure 141. SHAZAMControlModule:createSHAZAM (Sequence Diagram)c..c......... 3-200]
Figure 142. SHAZAMControlModule:deactivateSHAZAM (Sequence Diagram)................. 3-201]
Figure 143. SHAZAMControlModule:initialize (Sequence Diagram).........ccoococeveveccriceceanee. 3-202]
Figure 144. SHAZAMControlModule:putinMaintenanceMode (Sequence Diagram) 3-203|
Figure 145. SHAZAMControlModule:putOnline (Sequence Diagram)............c.cccocueueue..... 3-204]
Figure 146. SHAZAMControlModule:remove (Sequence Diagram)..............c.coeveverveverennnen. 3-205|
Figure 147. SHAZAMControlModule:ResetSHAZAMtoL astkKnownState

(SEQUENCE DIAGIAM)vviieisiseceiscesisssessesesessessssssssessesssssnssassnesssssesssnsssssstessnsetssnssssnsnsanas 3-206]
Figure 148. SHAZAMControlModule:setConfiguration (Sequence Diagram)....................... 3-207|
Figure 149. SHAZAMControlModule:shutdown (Sequence Diagram) c...cc..ccooccevreeorrceerreeee. 3-208]
Figure 150. SHAZAMControlModule:takeOffline (Sequence Diagram)..........cococeveeeveene.. 3-209)
Figure 151. SHAZAMULility (Class Diagram)............ccovevevevereueevinirerereiiersreeteeeensrererereennann, 3-210|
Figure 152. AudioCommon (Class Diagram)cccoueceriesrsriserississessesssssssesesssssssesssessanees 3-211|
Figure 153. CommLogManagement (C1ass DIagram)ovoeeweeeeoeeeeeeeeeenreenrerensesecenseees 3-214]
Figure 154. CommON (Cl1ass DIAGIAM)covovoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeensenseeeesenseeseeenanss 3-216|
R1B2 Servers Detailed Design Rev. 0 iX 04/17/01

Figure 155. DeviceManagement (Class DIaQram)cuoeeeueeoweeeeereeeeseeeeeseensesensesreeseees 3-219|
Figure 156. DictionaryManagement (C1ass Diagram)o.cooooueeeeereeeeeerseeeeeserseveneenees 3-222|
Figure 157. DMSControl (Class DIagram)ovceeveuevirereoreenirerrerseenseenerereenseeinsnereenans 3-224]
Figure 158. PlanManagement (Cl1ass Diagram)cocooeieerssrsrisssessisessessssessssssssessssessees 3-232]
Figure 159. HARCONtrol (Class Diagram)ooecoucirirsisessrisssssesssssisssssnsssssenssssssssasessasans 3-235]
Figure 160. ResourceManagement (Class Diagram)coovoeeeeeeeeeeeeeeeeseeenssereeserensees 3-241|
Figure 161. HARNOotification (Class DIagram)ccocceeeeveeiseesressesseireesseesiesseseessiessieens 3-245)|
Figure 162. LibraryManagement (C1ass Diagram)ccoo.coooeeeorrcensrcesscesscesseesseesseesseenneens 3-248]
Figure 163. LogCommon (Class DIagram).............ccevoueuereuereeoveiererereeenerereessensrererceennane, 3-251|
Figure 164. TrafficEventManagement (Class Diagram)........cc.coccsrecsieicsrecsisessseseesesessnees 3-253]
Figure 165. TrafficEventManagement2 (C1ass DIagram)............c.ceeeeeeeeeeeeeeeerreenrereenrees 3-257|
Figure 166. UserManagement (Cl1ass DIagram)............oooeoueeeeeeoeeeeeeeeeeeeeeserseensensnensensens 3-261|
Figure 167. TrafficEventHierarchy (Class Diagram).............occoeveveueverevereeerererrenseensnerrenans 3-263|
Figure 168. TrafficEventModuleClasses (Class Diagram)c.coceveeieesrecseessessssresesssnenes 3-266
Figure 169. TrafficEventModule:AddCommLogEntry (Sequence Diagram)ccc..cce.ee... 3-272]
Figure 170. TrafficEventModule: AddLogEntry (Sequence Diagram)cccoovevevenne.... 3-273|
Figure 171. TrafficEventModule:AddResponseltem (Sequence Diagram)...............c.c........... 3-274|
Figure 172. TrafficEventModule:AddResponseParticipation (Sequence Diagram)................ 3-275|
Figure 173. TrafficEventModule:AssociateEvent (Sequence Diagram).................................. 3-276|
Figure 174. TrafficEventModule:ChangeEventType (Sequence Diagram)..........cc.cocecevereaee. 3-277|
Figure 175. TrafficEventModule:CloseEvent (Sequence Diagram)cooveeerevevrvcnne. 3-278|
Figure 176. TrafficEventModule:CreateTrafficEvent (Sequence Diagram)........................... 3-279|
Figure 177. TrafficEventModule:ExecuteResponse (Sequence Diagram) 3-280|
Figure 178. TrafficEventModule:ExecuteResponsePlanltem (Sequence Diagram)................ 3-281]
Figure 179. TrafficEventModule:GetEventHistoryText (Sequence Diagram)..........c............ 3-282|
Figure 180. TrafficEventModule:Initialize (Sequence Diagram)coccooeeeeeceerevevereeenn.. 3-283|
Figure 181. TrafficEventModule:MonitorControlledResources (Sequence Diagram)............ 3-284]
Figure 182. TrafficEventModule:RemoveEventAssociation (Sequence Diagram)................. 3-285|
Figure 183. TrafficEventModule:RemoveResponseParticipation (Sequence Diagram) 3-286|
Figure 184. TrafficEventModule:RemoveResponsePlanltem (Sequence Diagram) 3-287|
Figure 185. TrafficEventModule:SetLaneConfiguration (Sequence Diagram)....................... 3-288|
R1B2 Servers Detailed Design Rev. 0 X 04/17/01

Figure 186. TrafficEventModule:SetMessageForUselnResponsePlan

I 10 T 3-289)
Figure 187. TrafficEventModule:Shutdown (Sequence Diagram)cccveveeveverreverennene. 3-290|
Figure 188. TrafficEventModule: TransferTrafficEvent (Sequence Diagram)ceeeeu.... 3-291]
Figure 189. TTSControlModuleClasses (Class Diagram)coocoucirersisecsressssesessinessanaes 3-292]
Figure 190. TTSControlModule:AddMessageToQueue (Sequence Diagram)....................... 3-297|
Figure 191. TTSControlModule:CleanupFileCache (Sequence Diagram)c..ccooccooeceene.e... 3-298]
Figure 192. TTSControlModule:ConvertTextToSpeech (Sequence Diagram) 3-299)
Figure 193. TTSControlModule:CreateFileCachelnfo (Sequence Diagram) 3-300|
Figure 194. TTSControlModule:GetSupportedFormats (Sequence Diagram) 3-301]
Figure 195. TTSControlModule:Initialize (Sequence Diagram)ooeeueeevevverreenn. 3-302|
Figure 196. TTSControlModule:GetVoiceLength (Sequence Diagram)...........c.cccocueue...... 3-303|
Figure 197. TTSControlModule:ProcessQueuedMessages (Sequence Diagram) 3-305|
Figure 198. TTSControlModule:PushAudioCliplnformation (Sequence Diagram)................ 3-306
Figure 199. TTSControlModule:Shutdown (Sequence Diagram)coococecerecsiesisecesnanee. 3-307|
Figure 200. UserManagementModuleClasses (Class Diagram)ocooeoeeveveeerecverercvennn. 3-308|
Figure 201. UserManagementModule:AddUser (Sequence Diagram)co..ccooccevrceorrccenrneee. 3-311]
Figure 202. UserManagementModule:ChangeUserPassword (Sequence Diagram) 3-312|
Figure 203. UserManagementModule:CreateRole (Sequence Diagram) 3-313|
Figure 204. UserManagementModule:DeleteProfileProperty (Sequence Diagram) 3-314|
Figure 205. UserManagementModule:DeleteRole (Sequence Diagram)c............ 3-315|
Figure 206. UserManagementModule:DeleteUser (Sequence Diagram)co.u........ 3-316|
Figure 207. UserManagementModule:GetSystemProfile (Sequence Diagram)..................... 3-317|
Figure 208. UserManagementModule:GetUserProfile (Sequence Diagram)c.ccceeveneees 3-318|
Figure 209. UserManagementModule:GrantRole (Sequence Diagram)........c.ccccoceeveireceevenneees 3-319]
Figure 210. UserManagementModule: Initialize (Sequence Diagram)ccocveverenne... 3-320|
Figure 211. UserManagementModule:ModifyRole (Sequence Diagram)..............ccc.cccceve..... 3-321]
Figure 212. UserManagementModule:RevokeRole (Sequence Diagram)..........occocevcecceeveeee... 3-322|
Figure 213. UserManagementModule:SetProfileProperties (Sequence Diagram) 3-323|
Figure 214. UserManagementModule:SetRoleFunctionalRights (Sequence Diagram) 3-324]
Figure 215. UserManagementModule:SetUserPassword (Sequence Diagram) 3-325|
Figure 216. UserManagementModule:SetUserRoles (Sequence Diagram)............................. 3-326|
R1B2 Servers Detailed Design Rev. 0 Xi 04/17/01

Figure 217. UserManagementModule:Shutdown (Sequence Diagram)coocueuneee... 3-327|

Figure 218. UtilityClasses (C1ass DIagram)...........c.ooeooeweeeeeeeeeeeeeeeeeeeeerseeeeensenseensensnaeas 3-328|
Figure 219. UtilityClasses2 (C1ass DIagram)............c.c.eveveueereueverereerseinsererereenseeenerareensrennsns 3-335|
Figure 220. DatabaseL ogger:getEntries (Sequence Diagram).........cocoeeerecseererssesresssessenenes 3-337]
Figure 221. DictionaryWrapper:checkForBannedWords (Sequence Diagram) 3-339)

R1B2 Servers Detailed Design Rev. 0 Xii 04/17/01

1 Introduction

1.1 Purpose

This document describes the detailed design of the CHART Il system software for Release 1,
Build 2. This design is driven by the Release 1, Build 2 requirements as stated in document
M361-002R1, “CHART Il System Requirements Specification Release 1 Build 2" and further
refines the high level design presented in document M362-DS-005, “R1B2 High Level Design.”

1.2 Objectives

The main objective of this design is to provide software developers with details regarding the
implementation of the service applications used to satisfy the requirements of Release 1, Build 2
of the CHART Il system.

This design also serves to provide documentation to those outside of the software development
community to show how the requirements are being accounted for in the software design.

1.3 Scope

This design is limited to Release 1, Build 2 of the CHART Il system and the requirements as
stated in the aforementioned requirements document that have been allocated to Release 1, Build
1 or Build 2. Additionally, this design document includes only the design of CHART Il services
and does not include the design of the Graphical User Interface, Database Schema, or Field
Communications.

1.4 Design Process

As in the high level design, object-oriented analysis and design techniques were used in creating
this design. As such, much of the design is documented using diagrams that conform to the
Unified Modeling Language (UML), a de facto standard for diagramming object-oriented
designs.

In the high level design, system interfaces were identified and specified. These interfaces were
partitioned into logical groupings of packages. This design serves to fill in the details necessary
to implement each of the system interfaces identified in the high level design.

In this design, each package identified in the high level design is addressed separately with its
own class diagram and sequence diagrams for major operations included in the package’s
interfaces. Additionally, packages needed for implementation but not present in the high level
design are included in this design, with each of these also having its own class diagram and
sequence diagrams. Packages are also included for third party software that is needed by the
CHART II software, such as the ORB and Java classes. Only classes and methods shown on the
sequence diagrams are included in diagrams for third party products.

R1B2 Servers Detailed Design Rev. 0 1-1 04/17/01

The design process for each package involved starting with a class diagram including interfaces
from the high level design, and filling in details to the class diagram to move toward
implementation. Sequence diagrams were then used to show how the functionality is to be
carried out. An iterative process was used to enhance the class diagram as sequence diagrams
identified missing classes or methods.

1.5 Design Tools

The work products contained within this design are extracted from the COOL:JEX design tool.
Within this tool, the design is contained in the CHART Il project, R1B2 configuration, System
Design phase. A system version is included for each software package.

1.6 Work Products
This design contains the following work products:

* A UML Class diagram for each package showing the low level software objects
which will allow the system to implement the interfaces identified in the high level
design.

» UML Sequence diagrams for non-trivial operations of each interface identified in the
high level design. Additionally, sequence diagrams are included for non-trivial
methods in classes created to implement the interfaces. Operations that are considered
trivial are operations that do nothing more than return a value or a list of values and
where interaction between several classes is not involved.

R1B2 Servers Detailed Design Rev. 0 1-2 04/17/01

2 Key Design Concepts

This section discusses various elements of the design that warrant more discussion than the UML
diagrams afford. The High Level Design Document referenced above provides background
information on CORBA and R1B2 Packaging and Deployment that may be necessary to fully
benefit from the discussions below.

2.1 Access Control

As discussed in the R1B2 High Level Design, the CHART Il system uses a flexible access
control system based around the following basic elements:

e users
» system functions
» shared resources
» functional rights and roles.

Each user of the system is assigned one or more roles. Each role has one or more functional
rights. Each system function must ensure the user initiating the operation has the proper
functional right before allowing the function to be executed. Shared Resources, which have an
owning organization, utilize an organization filter in conjunction with certain functional rights to
allow rights to be granted based on the organization that owns the device. For example, a role
may be granted a functional right to set a message on SHA DMSs but not MDTA DMSs.

This design allows access to groups of system functions to be assigned to users to easily provide
each user with the desired level of access to the system. The table in Appendix A shows each of
the system functions in R1B2 for which access control is supplied. Also shown in the table is the
functional right that is required for a user to execute the system function and whether the
functional right can be used in conjunction with an organization filter.

Implementations of system functions rely on two key elements to carry out access control, a user
access token and a token manipulator. When a user logs into the system, the UserManager object
returns an access token to the GUI that contains a binary encoding of the functional rights that
are held by the user, as defined by their currently assigned roles.

When the user attempts to execute a system function that is access controlled, the GUI passes the
user’s token as a parameter to the system function. Each system function is coded to know
exactly which functional right is required to execute the function (see the table in Appendix A
below). To determine if the user should be allowed to execute a system function, the system
function passes the user’s access token and the function’s required functional right to an object
called a token manipulator, which tells the function if it should allow execution or not.

The token manipulator encapsulates the knowledge of the binary format of an access token and
keeps the burden of access control minimal for system functions.

R1B2 Servers Detailed Design Rev. 0 2-1 04/17/01

2.2 Operations Logging

The CHART Il system tracks all usage of access controlled system functions through the
operations log. When a user successfully executes such a function, a record is stored in the
operations log table in the CHART Il database that contains the user’s name, operations center,
date and time, a description of the operation the user performed, and a category for the operation.
To ease the burden on system functions in performing this task, an OperationsLog utility class
exists. This utility class provides an API that allows an entry to be added to the operations log
without the system function having to interface with the database directly.

Although every access controlled system function utilizes the OperationsLog class to perform
operations logging, many diagrams in section do not show this class interaction due to
the limited amount of space available on each diagram.

2.3 Service Application Framework

In a CORBA based system, service applications are used to serve CORBA objects through the
ORB, making them available for use by other applications through a network. Once an object has
been created and connected to the ORB, the object can act as an independent piece of software,
given access to some basic services. The service applications that are built to serve CORBA
objects usually share the same basic structure and functionality. The design team took advantage
of this fact to provide a reusable framework for service applications.

The design of the application framework for CHART Il CORBA Services is based upon two
interfaces, the ServiceApplication and the ServiceApplicationModule. A class that implements
the ServiceApplication interface is able to provide the basic services needed by CHART II
CORBA objects. A ServiceApplicationModule is responsible for the initialization and shutdown
of specific CORBA objects, using the services provided by the ServiceApplication.

Several classes that implement the ServiceApplicationModule interface are included in this
design, with each module responsible for serving one or more specific CHART Il CORBA
classes. Each of these modules has its own initialization and shutdown methods tailored to the
needs of the objects that it serves. Typical module initialization involves object creation from a
state persisted in the database, connecting objects to the ORB, creation of an event channel, and
publication of objects in the Trading Service. Typical module shutdown involves disconnecting
objects from the ORB and destroying the objects.

The DefaultServiceApplication class provides a default implementation of the
ServiceApplication interface. The DefaultServiceApplication is capable of hosting one or more
ServiceApplicationModules. A configuration file used by the DefaultServiceApplication
specifies the modules served by a specific instance of the DefaultServiceApplication. This
design allows for flexibility in the partitioning of objects among software processes. Modules
can be brought together into a single process to achieve performance gains or moved to separate
processes to provide greater fault isolation.

The design of the Service Application Framework is evidenced throughout this design. Packages
exist for each module and a package named CHART2Service provides an application entry point
for the DefaultServiceApplication.

R1B2 Servers Detailed Design Rev. 0 2-2 04/17/01

2.4 Service Application Maintenance

The CHARTService application implements the Service interface (defined in IDL) to allow for
clean service shutdown. In addition to allowing shutdown, the Service interface includes features
that will be useful for a future system monitor process. These features include the ability for a
service to tell its name when asked, tell the network connection site where it is running, and
respond to a ping operation. Since the Service is a CORBA object attached to an ORB, these
operations on a service can be accessed from anywhere on the CHART Il network.

2.5 Event Channel Fault Tolerance

The standard CORBA event service contains a single event channel that is accessed through
transient objects served by the event service called consumers and suppliers. Since the objects
are transient, if the event service should crash, applications using the event service need to
reinitialize their connection to the event service once it becomes available. The CHART Il R1B2
design contains utility classes that allow applications to be tolerant of restarts of the event
service. The PushEventSupplier, PushEventConsumer, and EventConsumerGroup classes, and
the EventConsumer interface provide functionality for maintaining the connection to an event
channel. The PushEventSupplier works as a wrapper to a CORBA PushSupplier that detects
when an attempt to push fails and automatically attempts to reconnect on subsequent pushes.

The EventConsumer and EventConsumerGroup work together to allow multiple associations of
event channels and consumers to be maintained, with a polling thread that periodically checks
the connection of the consumer to the event channel and performs an automatic reconnect if
necessary. The PushEventConsumer is an implementation of the EventConsumer that uses the
push event model.

In addition to the need to provide fault tolerance for the CORBA Event Service, the standard
event service’s limitation to a single event channel causes events of all types to be passed on the
same event channel. While this provides no hardship to suppliers of events, it requires consumers
to filter the events to determine if they need to take action on an event or throw it away. This
leads to inefficiency in both the processing required to filter the events as well as the network
bandwidth used to pass unwanted events to consumers. This also makes it harder to provide a
modular GUI design that allows seamless addition of new functionality.

To make up for this shortcoming, this design makes use of the ORB vendor’s extension to the
event service that includes an EventChannelFactory interface that provides the capability for
creating multiple event channels within a single EventService. The CHART Il R1B2 design
utilizes this added functionality to allow each module to be responsible for creating an event
channel in their local event service and publishing the event channel object in the trader. This
allows event channels throughout the system to be collected to provide a “big picture” of the real
time status of the system and also provides fault isolation if an event service should fail.

R1B2 Servers Detailed Design Rev. 0 2-3 04/17/01

2.6 Object Publication

As discussed in the High Level Design, the CORBA Trading Service is used by CHART Il to
allow CORBA objects to be discovered and used by other applications, including the CHART Il
GUI. All objects published in the Trading Service from CHART Il applications are published
with a service type equal to the interface name which the object implements. Full interface name
hierarchies are used through the use of the supertypes registration feature (such as
SharedResource / DMS) to allow generic as well as specific queries. All CHART Il objects
published in the trader have a standard mandatory property named “ID” of type octet sequence.
This ID is a globally unique identifier that remains with the object for the life of the object, even
through multiple restarts of the service serving the object. Use of this ID allows objects to be
located regardless of where they are being served in the system.

The following CHART Il R1B2 objects are published in the Trading Service:

* CHART2DMS » Organization

» CHART2DMSFactory * Plan

« CHART2HAR » PlanFactory

» CHART2HARFactory « SHAZAM

« CommLog SHAZAMFactory

* Dictionary » StoredMessage

* EventChannel » TrafficEvent

» LibraryFactory » TrafficEventFactory
* MessageLibrary » UserManager

2.7 Pass By Value

Some system interfaces in this design rely on the pass by value feature of CORBA 2.3. Pass by
value allows a copy of a software object created by a client to be passed as an argument to a
CORBA servant (or vice versa). While this concept is much like passing a group of values
between CORBA servant and client as a structure, it features the ability to use subclassing to
allow the objects to behave polymorphically.

An example of the use of pass by value in this design is evident in the DMS control interfaces. A
value type named DMSStatus is defined which contains status values that are common to all
DMS devices. CHART2DMSStatus adds status values specific to CHART I, such as the
controlling operations center of the device. Model specific derivations add status values only
present in specific DMS models, such as the error status bits of an FP9500.

This use of subclassing allows the DMS interface to specify a method named getStatus() that
returns a DMSStatus object. The specific implementation of the DMS object will pass back the

R1B2 Servers Detailed Design Rev. 0 2-4 04/17/01

appropriate “flavor” of DMSStatus based on the DMS model. As new DMS models are added to
the system, the interface does not change, which means previously developed code can remain
stable.

Subclassing of Status objects also allows a GUI that encounters a sign model for which it does
not have a model specific status dialog to show status information that is defined in the base
class, DMSStatus. While this is of no benefit for sign models coded for directly under the
CHART Il project, it would allow DMS objects published by other organizations to be viewed
easily by the CHART Il GUI, without the CHART Il GUI having to add any code specific to the
sign model.

2.8 Database Access

A relational database is used to store system configuration data, persist object states (to allow
restarts to assume their previous state), and to log user operations in the operations log. Java
Database Connectivity (JDBC) is used within the application software to access the database.
Access to the database is managed by the CHART Il DBConnectionManager class. This class
manages connections to the database. Each software package that requires access to the database
includes a class that contains methods for all database accesses needed by the package. These
classes are named with the package name and a suffix of DB. These database classes all use the
DBConnectionManager object to obtain a JDBC connection to the database each time a series of
queries or statements are to be executed. By managing a pool of actual database connections, the
DBConnectionManager class makes sure that only one thread at a time has access to a given
database connection, thus allowing transactional processing to be done safely.

2.9 Field Communications

Field communications are necessary in R1B2 to control DMS, HAR, and SHAZAM devices. The
design for field communications is provided by the FMS subsystem and is not included in this
design. This design includes placeholder objects used to show the interface points with the FMS
communications system. These objects are only placeholders at this time because the FMS
detailed design is not complete at the time of this writing. The FMS detailed design will contain
a full discussion on the interface provided to the CHART Il system.

2.10 Error Processing

Because CHART Il is a distributed object system, it is expected that any call to a remote object
could cause a CORBA exception to be thrown. All software calls to remote objects handle
CORBA exceptions and the processing is not shown on sequence diagrams within this design
except where it serves to illustrate a design point.

Furthermore, as with any system, most method calls, system calls, etc. can fail unexpectedly. All
such errors are handled by the software and are not shown explicitly in the package design

R1B2 Servers Detailed Design Rev. 0 2-2 04/17/01

portion of this document. The default action when such an error is encountered is to reach a
consistent state within the object where the error occurred and then to throw a
CHART2Exception (even for non-CORBA calls). The CHART2Exception contains debugging
information as well as text suitable for display to a user or administrator. These exceptions are
shown on sequence diagrams to call out error conditions that are not obvious.

The Log utility class is used by modules to log error conditions to a flat file that is created by the
service application hosting the module. The log file entries contain the name of the class that
logged the entry, the date and time of the entry, and descriptive text of the error that occurred.
The Log utility also provides the capability for a stack trace to be printed to the file to
accompany the error. This feature is reserved for use when an error condition is caught and the
exact cause of the error condition is not known. Log files created by the Log utility class are self-
cleaning and are automatically removed from the system when they reach a certain age, as
specified in a configuration file.

2.11 Recorded Voice Handling

This design accounts for the ability for operators to record voice at their workstation for
broadcast on a HAR device. Because voice data can be very large, the passing of this voice data
is minimized through the use of wrapper objects and streamers.

Recorded voice is supported in the CHART Il system for
* immediate broadcast on a HAR
» storage in a slot on a HAR for future broadcast, and
» storage in a message library.

When voice is recorded the voice data is packaged in a HARMessageAudioDataClip object,
which in turn is included in a HARMessage object. Upon receiving a
HARMessageAudioDataClip, the CHART2HAR or MessagelLibraryDB objects use a utility
class named HARAudioClipManager to persist the audio data and obtain a
HARMessageAudioClip in place of the HARMessageAudioDataClip. The
HARMessageAudioClip contains a unique ID assigned to the voice data and a reference to an
object known as a streamer that can provide access to the actual voice data given the ID. In
CHART Il R1B2, the HARAudioClipManager utility is a streamer and places a reference to
itself in every HARMessageAudioClip it creates.

Because HARMessageAudioClip objects are small, they can be passed throughout the system as
the part of the device status for a HAR without having a significant impact on network
bandwidth usage. The only times the recorded voice data will be passed across the network after
its initial storage will be when the user wishes to listen to the voice data or the voice needs to be
recorded onto the HAR device. When this occurs, the HARMessageAudioClip is told to stream
the data and the HARMessageAudioClip delegates the request to the streamer reference it
contains, which is always the HARAudioClipManager where the data was originally stored.

Recorded voice data is automatically cleaned up from the servers when it is no longer needed.
CHART2HAR objects request that their HARAudioClipManager delete the voice data when an
immediate message containing a HARMessageAudioClip is blanked or replaced by a different

R1B2 Servers Detailed Design Rev. 0 2-3 04/17/01

message, or when a slot containing a HARMessageAudioClip is deleted or replaced. When a
StoredMessage is deleted from the system, the MessageLibraryDB object requests that any
HARMessageAudioDataClips contained in a HARMessage be deleted from the system. An
owner ID is used by the HARAudioClipManager to distinguish clips stored by the message
library vs. clips stored by a HAR. This is necessary because the CHART2HAR objects
indiscriminately ask their HARAudioClipManager to delete voice data associated with any
HARMessageAudioClip they are through playing. The owner ID is used to keep the
CHART2HAR from deleting a clip that is part of a stored message.

2.12 Packaging

This software design is broken into many packages of related classes. The table below shows
each of the packages along with a description of each.

CHART2Service This package contains an implementation of the
ServiceApplication interface specified in the utilities
package. This implementation is used as the base application
for serving one or more service application modules.
Configuration files are used to configure the service
application to specify the service application modules that
will run within an instance of the application.

CommLogModule This package contains a service application module that
serves the CommLog interface as specified in the system
interfaces.

CORBAUJtilities This package contains classes included in the third party

ORB product used for implementation. Only classes that are
directly referenced from diagrams for CHART Il software
are included in this package’s diagrams.

DeviceUtility This package contains utility classes that are shared device
packages, such as DMS and HAR. This includes an
implementation of the arbitration queue.

DictionaryModule This package contains a service application module that
serves the Dictionary interface as specified in the system
interfaces.

DMSControlModule This package contains a service application module that

serves the CHART2DMSFactory and CHART2DMS objects
as specified in the system interfaces.

R1B2 Servers Detailed Design Rev. 0 2-4 04/17/01

DMSUtility

HARControlModule

HARUTLility

JavaClasses

MessageL.ibraryModule

PlanModule

ResourcesModule

SHAZAMControlModule

SHAZAMUtility

SystemInterfaces

R1B2 Servers Detailed Design Rev. 0

This package contains utility classes that are shared among
the server and GUI DMS modules. Examples of DMSUtility
classes are the MultiConverter and implementation of value
types defined in the DMSControl system interfaces.

This package contains a service application module that
serves the CHART2HAR and CHART2HARFactory
interfaces.

This package contains HAR related utility classes shared by
the server and GUI.

This package contains classes included in the Java
programming language. Only classes that are directly
referenced from diagrams for CHART Il software are
included in this package’s diagrams.

This package contains a service application module that
serves the LibraryFactory, = MessageLibrary, and
StoredMessage interfaces specified in the system interfaces.

This package contains a service application module that
serves the PlanFactory, Plan, and Plan Item interfaces
specified in the system interfaces.

This package contains a service application module that
serves the OperationsCenter and Organization interfaces
specified in the system interfaces.

This package contains a service application module that
serves SHAZAM and SHAZAMFactory interfaces as
specified in the system interfaces.

This package contains SHAZAM related utility classes
shared by the server and GUI.

This package contains the CORBA interfaces and related
definitions for the CHART Il system. These interfaces and
classes define the IDL for the CHART Il system.

2-5 04/17/01

TrafficEventModule

TTSControlModule

UserManagementModule

Utility

This package contains a service application module that
serves instances of the TrafficEvent interface as specified in
the system interfaces.

This package contains a service application module that
serves the TTSControl interface as specified in
Systemlnterfaces. This interface provides conversion from
text to speech.

This package contains a service application module that
serves the UserManager interface specified in the system
interfaces.

This package contains utility classes shared by other
packages, including classes used to access the database and
the OperationsLog class.

The remainder of this document contains detailed designs of each of the above packages.

R1B2 Servers Detailed Design Rev. 0

2-6 04/17/01

3 Package Designs

The following sections provide detailed designs of each of the software packages included in
CHART Il R1B2. Each section contains a class diagram and sequence diagrams for non-trivial
operations for a software package.

3.1 CHART2Service

3.1.1 Classes

3.1.1.1 CHART2ServiceClasses (Class Diagram)

The diagram shows classes of an application that helps in installation and termination of the
modules related to CHART Il system.

ServiceApplication

start Service
shutdown

getORB():ORB

getPOA(string poaName):POA

getTradingRegister(): Cos Trading.Register ping():void
getTradingLookup():CosTrading.Lookup getName():string; =~
getEventChannelFactory():EventChannelFactory getNetConnectionSite():string; o
getDBConnectionManager():DBConnectionManager oneway shutdown(AccessToken token):void
getOperationsLog():OperationsLog A
getProperties():java.util. Properties T

getDefaultProperties():java.util. Properties
registerObject(obj, id, name, type, publish):void
registerEventChannel(EventChannel, name):void
getiDGenerator():IdentifierGenerator

A

* ServiceApplicationModule
DefaultServiceApplication

CHART2Service

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean

DefaultServiceApplication(String propertiesFilename) . . o
-writeOffers ToFile(String moduleName, int[] offerlDs):boolean main(string(] args):void
-removeOffersFromFile(String moduleName):boolean

Figure 1. CHART2ServiceClasses (Class Diagram)

3.1.1.1.1 CHARTZ2Service (Class)

The CHART2Service is an application that helps in installation and termination of the
modules in CHART Il system.

3.1.1.1.2 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface. This class is
passed a properties file during construction. This properties file contains configuration data
used by this class to set the ORB concurrency model, determine which ORB services need

R1B2 Servers Detailed Design Rev. 0 3-1 04/17/01

to available, provide database connectivity, etc. The properties file also contains the class
names of service modules that should be served by the service application. During startup,
the DefaultServiceApplication instantiates the service application module classes listed in
the properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the
Trading Service. Each module must provide an implementation of the getOfferIDs method
and be able to return the offer IDs for each object they have exported to the trader during
their initialization. The DefaultServiceApplication stores all offer IDs in a file during its
startup. Each module is expected to remove its offers from the trader during a shutdown. If
the DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up
old offers prior to initializing modules during its next start. This keeps multiple offers for
the same object from being placed in the trader.

3.1.1.1.3 Service (Class)

This interface is implemented by all services in the system that allow themselves to be
shutdown externally. All implementing classes provide a means to be cleanly shutdown and
can be pinged to detect if they are alive.

3.1.1.1.4 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.1.1.1.5 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

R1B2 Servers Detailed Design Rev. 0 3-2 04/17/01

3.1.2 Sequence Diagrams

3.1.2.1 CHART2Service:Shutdown (Sequence Diagram)

This sequence diagram shows shutdown of CHART2Service. This service calls shutdown
on DefaultServiceApplication object that shuts down the modules that are served by the
CHART Il system. Refer to DefaultServiceApplication’s Shutdown sequence diagram in
Utility package for details. The CHART2Service deactivates itself using the POA and the
CHART2Service calls the deactivate method on the POAManager to exit the event loop
and shudown.

CHART2Service DefaultServiceApplication POA POAManager
Administrator
shutdown——>}
shutdown The default service application
™| will call shutdown on each
installed ServiceApplicationModule.
getPOA

deactivate_object

deactivate:

l<......[shutdown failed]
exit

Figure 2. CHART2Service:Shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-3 04/17/01

3.1.2.2 CHART2Service:Startup (Sequence Diagram)

This sequence diagram shows startup of CHART2Service. This service creates and starts a
DefaultServiceApplication object and the modules that are served by the CHART Il system.
Refer to DefaultServiceApplication’s Start sequence diagram in Utility package for details.
The CHART2Service is activated using the POA and the CHART2Service activates the
POAManager to enter the event loop and start serving the CORBA requests.

o

i CHART2Service POA POAManager
Administrator

main———>}

——create—> DefaultServiceApplication

>>>>>>>>>>>>>>>>>>>>> The default service
stat———™> i T application will find all
S installed ServiceApplicationModules
rrrrrrrrrr [Stag;ﬁ"ed] and will call initialize on each of them.

getPOA

activate_object:

the_ POAManager

activate

™ This call blocks
until the POAManager
deactivate method is called.

Figure 3. CHART2Service:Startup (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-4 04/17/01

3.2 CommLogModule

3.2.1 Classes

1.1.1.1 CommLogModuleClassDiagram (Class Diagram)

This Class Diagram displays classes used for managing the Communications Log.
Operators can add entries directly to the Communications Log, and entries are also added
indirectly with certain Traffic Events manipulations. Operators can view or search entries in
the Communications Log, but cannot edit them.

ServiceApplication ServiceApplicationModule CommLogModuleProperties
start initialize(ServiceApplication app):boolean getLoglteratorDisuseTimeout() : int
shutdown shutdown(ServiceApplication app):boolean getLoglteratorDisuseCheckinterval() : int
getORB():ORB

getPOA(string poaName):POA

getTradingRegister():Cos Trading.Register 1 1
getTradingLookup(): CDsTradlng Lookup 1
getEventCk y
getDBConnecanManager() DBCGnneCllonManager java.util.Properties
getOperationsLog():OperationsLog
getProperties():java.util. Properties
getDefaultProperties():java.util. Properties 1
registerObject(obj, id, name, type, publish):void
registerEventChannel(EventChannel, name):void getProperty()
getDGenerator():IdentifierGenerator setProperty()
ORB
init()
BOA_init()
connect()
disconnect()
resolve initial_references()
1 string_to_object()
1 object_to_string()
CommLogModule

int m_factoryOfferiD /%/
CosTrading.Register
1
LogEnt

N withdraw
1
l java.util.Timer java.util.TimerTask
1 1
CommLogClient >
schedule run
cancel
addCommLog(CommLog)
gelEnlnes(AccessToken token, LogFilter filter,
g maxCount, LogEntryList entries) : Loglterator
addEnlnes(AccessToken token, LogEntryDatalList logEntries) : void
1
IteratorCleanupTask
* Databaselogger m_dbLogger
CommLog run()

getEntries(AccessToken token, LogFilter filter,
ng maxCount, LogEntryList entries) : Loglterator
addEntries(AccessToken token, LogEntryDataList logEntries) : void

1

1 1 1 1
PushEventSupplier CommLogImpl TokenManipulator
pushes

LogEntries | DBConnectionManager m_db
using

1

DatabaselLogger

Figure 4. CommLogModuleClassDiagram (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-5 04/17/01

3.2.1.1.1 CommLog (Class)

This class manages log entries. These can be general Communications Log entries or
specific log entries for a specific Traffic Event. This class is the primary interface for the
CommLog service. It is used to persist log entries in the CHART Il system and retrieve
them for review. Log entries can be created directly by users or indirectly as a result of
manipulating Traffic Events.

3.2.1.1.2 CommLogClient (Class)

This class is a wrapper to be used by clients of the Communications Log. It provides
services such as discovering instances of the CommLog in the trader and caching entries to
the comm log that are added when the comm log is not available.

3.2.1.1.3 CommLoglmpl (Class)

This class implements the CommsLog interface; that is, it implements the methods defined
by CommLog, allowing user interface processes access to the Communications Log for
adding entries and selecting entries for viewing.

3.2.1.1.4 CommLogModule (Class)

This class implements the ServiceApplicationModule for controlling the CommLog. This
class starts up the CommsLog service, and shuts it down when requested.

3.2.1.1.5 CommLogModuleProperties (Class)

This class represents an object that provides access to properties that are specific to the
CommLog module.

3.2.1.1.6 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for
object publication and discovery respectively. The CosTrading.Register is the interface to
the trading service that server applications use to publish objects in order to make them
available for client applications to discover.

3.2.1.1.7 DatabaselLogger (Class)

This class represents a generic database logger that can be used to log and retrieve
information from the database. This class also provides a mechanism for the user to filter
and retrieve logs that meet specific criteria.

3.2.1.1.8 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to
a stream or loaded from a stream. Each key and its corresponding value in the property list

R1B2 Servers Detailed Design Rev. 0 3-6 04/17/01

is a string. A property list can contain another property list as its “defaults”; this second
property list is searched if the property key is not found in the original property list.

3.2.1.1.9 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general
Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic
Event actions (opening, closing, etc.) are logged in the Communications Log as well as in
the history of the specific Traffic Event.

3.2.1.1.10 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote
procedure call mechanism for inter-process communication. The ORB is the basic
mechanism by which client applications send requests to server applications and receive
responses to those requests from servers.

3.2.1.1.11 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

3.2.1.1.12 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.2.1.1.13 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.2.1.1.14 TokenManipulator (Class)

This class contains all functionality required for user rights in the system. It is the only code
in the system that knows how to create, modify and check a user’s functional rights. It

R1B2 Servers Detailed Design Rev. 0 3-7 04/17/01

encapsulates the contents of an octet sequence that will be passed to every secure method.
Secure methods should call the checkAccess method to validate the user. Client processes
should use the check access method to verify access and optimize to reduce reduce the size
of the sequence to only those rights that are necessary to invoke the secure method. The
token contains the following information. Token version, Token ID, Token Time Stamp,
Username, Op Center ID, Op Center IOR, functional rights

R1B2 Servers Detailed Design Rev. 0 3-8 04/17/01

3.2.2 Sequence Diagrams

3.2.2.1 CommLogModule:addEntries (Sequence Diagram)

This sequence is initiated by a process (GUI) that is adding one or more entries into the
Communications Log. (A process normally adds entries one at a time as events are created.
More than one entry may be queued up if the CommsLog service has been unavailable.)
The CommsLog service adds each entry on the list to the database.

CommLog TokenManipulator Databaselogger PushEventSupplier
ORB
——addEntries—=;
—validate Token—>
[if bad]
Chart2Exception
hasRight
2 [if no rights]___:
AccessDenied
create LogEntry
addEntry
for each
LogEntryData "Add entry
passed in to database"
push(LogEntry)
delet

Figure 5. CommLogModule:addEntries (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-9 04/17/01

3.2.2.2 CommLogModule:destroy (Sequence Diagram)

X

ORB

Loglteratorimpl LogEntryCache HashTable
destroy
—removeEntry()—>; CachedLogEntry

—decrRefCount()——>
——getRefCount()—=

for each . [if refCount is 0] S

remaining getEntry()

entry in

list

[if refCount == 6]
remove(CachedLogEntry)

. [if refCount == 0] 55

delete

X

[if refCount is 0]

LogEntry

delete reference

>

X

Figure 6. CommLogModule:destroy (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-10

This sequence is executed by a user process (GUI) when it is done with a Loglterator (due

to no more entries left or operator cancel). Each LogEntry conceptually on the Loglterator’s
list which was never returned to the caller (if any) is removed from the cache and destroyed
if necessary, then the Loglterator itself is deleted.

04/17/01

3.2.2.3 CommLogModule:getEntries (Sequence Diagram)

This sequence shows how the CommsLog service responds to a request from another
process (GUI) for entries from the Communications Log. The request may be constrained
by a filter (based on time, originating Op Center, author, etc.). If the amount of data is
larger than the requestor-specified size, the first clump is returned immediately, together
with a Loglterator that can be used to later retrieve additional data, which is cached as the
initial request is processed.

CommlLog TokenManipulator | | DatabaselLogger
ORB
—getEntries()—>
—validate Token()—
[if bad]
Chart2Exception
——hasRight()—=>
[if no rights]__:
AccessDenied
getEntries()
Loglterator
 LogEntryList_ S Log EntryL|§\t\& Loglterator-----------1
&Loglterator ™

.| Loglterator may be NULL if
" all entries fit in one "clump".

If Loglterator is non-NULL,
caller can call Loglterator for

more entries as desired. See
Databaselogger::getEntries()
for details
getMoreEntries() =

LogEntryList

Figure 7. CommLogModule:getEntries (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-11 04/17/01

1.1.1.2 CommLogModule:initialize (Sequence Diagram)

This sequence is executed by the Service Application to start a CommsLog service if
required. The CommLogModule creates a CommLog service object and makes it ready to
begin servicing requests. The CommLog service allows for creation and retrieval of
Communications Log Entries. New entries are pushed through the CORBA event service.

X

ServiceApplication

CommLogModule

ServiceApplication

initialize———>
—getDefaultProperties ()—>
-getProperties()—>}

CommLogModuleProperties

getDBConnectionManager()>}

create /‘ CommLog

——creatt

Databaselogger

orea LogEntryCache

GetPOA() BOA

-activate_object (CommLog)

-getEventChannelFactory()=>

/‘ PushEventSupplier

-getEventChannel()

—getTradingRegister()—> CosTrading.Register

export(EventChannel

getLoglteratorDisuseTil ()

gelngIleranrDi useCheckintervalMins ()

creat

java.util. Timer

create ,l IteratorCleanupTask

......

Figure 8 CommLogModule:initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-12 04/17/01

1.1.1.3 CommLogModule:runiteratorCleanup (Sequence Diagram)

This sequence diagram shows the processing done to clean up any stray iterators that may
have been left around by clients.

py

java.util.Timer

IteratorCleanupTask Databaselogger

CommlLoglterator

run

——CcheckExpirediterators—>;

[*for each

[iterator hasn't been used during timeout period)]

iterator

Figure 9. CommLogModule:runiteratorCleanup (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

Halat
aelete

3-13

X

04/17/01

1.1.1.

4 CommLogModule:shutdown (Sequence Diagram)

This sequence is used to shutdown the CommsLog service as part of an orderly shutdown.

The CommsLog deletes all memory associated with cached retrieval requests and exits. No

attempt is made to persist cached data or iterators. GUIs must re-request at a later time.

o)
j: CommLogModule CosTrading.Reqister POA | ‘ CommLog ‘ Databaselogger | | Logteratorimpl || PushEventSupplier | commLogModuleProperties | java.util. Timer
Service
Application
—withdraw(EventChannel)—>{
deactivatefnbject(EvgnlChannel)
—withdraw(CnmmLog)—%i
ivate_object(CommLogy
delete-
hutdown
cancel()y
——destroy()—> See ><
for each “....| CommLogModule::destroy()
Logtteratorimpl >< for details
LogEntryCache ‘ Hashtable
delete
delete
delete
delete

R1B2 Servers Detailed Design Rev. 0

Figure 10 CommLogModule:shutdown (Sequence Diagram)

3-14 04/17/01

3.3 CORBAUtilities

3.3.1 Classes

3.3.1.1 CORBACIasses (Class Diagram)

The CORBAUTtilities package exists to provide reference to classes that are supplied by the
ORB Vendor and are referenced by other packages’ class or sequence diagrams.

com.ooc.CosEventChannelAdmin.impl.EventChannel

K§7

CosEventChannelAdmin. CosEvent.
EventChannel PushConsumer CosTrading.Register
CosTrading.Lookup

for_consumers() push export

for_suppliers() withdraw query

destroy()

ORB
POAManager POA

init() the_POAManager
BOA_init()
connect() activate() activate_object(Servant obj)
disconnect() deactivate() deactivate_object(object_id)
resolve_initial_references()
string_to_object()
object_to_string()

Figure 11. CORBACIasses (Class Diagram)

3.3.1.1.1 com.ooc.CosEventChannelAdmin.impl.EventChannel (Class)

This class is the ORB vendor’s implementation of a CORBA event channel. The event
service provided by the vendor simply serves one of these objects. The Extended Event
Service serves a factory that allows multiple instances of the vendor supplied event channel
to be created.

3.3.1.1.2 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the

channel.

R1B2 Servers Detailed Design Rev. 0 3-15 04/17/01

3.3.1.1.3 CosEventChannelAdmin. EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and
consumers of information.

3.3.1.1.4 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for
object publication and discovery respectively. The CosTrading.Lookup is the interface that
applications use to discover objects that have previously been published.

3.3.1.1.5 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for
object publication and discovery respectively. The CosTrading.Register is the interface to
the trading service that server applications use to publish objects in order to make them
available for client applications to discover.

3.3.1.1.6 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote
procedure call mechanism for inter-process communication. The ORB is the basic
mechanism by which client applications send requests to server applications and receive
responses to those requests from servers.

3.3.1.1.7 POA (Class)

This interface represents the portable object adapter used to activate and deactivate servant
objects.

3.3.1.1.8 POAManager (Class)

This interface represents the portable object adapter manager used to activate and deactivate
the POA.

R1B2 Servers Detailed Design Rev. 0 3-16 04/17/01

3.4 DeviceUtility

3.4.1 Classes

3.4.1.1 DeviceUtility (Class Diagram)

This class diagram shows utility classes that are useful for tasks in performing device
control.

R1B2 Servers Detailed Design Rev. 0 3-17 04/17/01

ArbQueueEntry
ArbitrationQueue
TrafficEvent m_trafficEvent
byte[] m_trafficEventiD
1 * | Message m_message
addEntry(AccessToken, ArbQueueEntry):void boolean m_inProgress
removeEntry(AccessToken, byte[] trafficEventID):void boolean m_active
eventTypeChanged(AccessToken, TrafficEvent):void; boolean m_deleted
eventTransferred(Access Token token, boolean m_updated
TrafficEvent trafficEvent,
Identifier opCenterID, ArbQueueEntry(TrafficEvent, Message):ArbQueueEntry
string opCenterName):void; getTrafficEvent():TrafficEvent
getTrafficEventID():byte[]
A abstract setActive(String deviceName, String msg):void

abstract setlnactive(String deviceName, String msg):void
abstract setFailed(String deviceName, String errorMsg):void

ArbitrationQueuelmpl

boolean m_interrupted

boolean m_deviceReqInProg
long m_deviceReqID
java.util.Vector m_msgQueue
java.lang.Object[] m_lock
DictionaryWrapper m_dictionary

interrupt():void

resume():void

requestSucceeded(reqID):void

requestFailed(reqID, prevMsgRemains, failReason):void
asyncDeviceStatus(reason):void
asyncMsgChanged(reason):void
&evaluateQueue():void

1 *
1
ArbitrationQueueDB
DBConnectionManager m_db
ArbitrationQueueDB(DBConnectionManager db):ArbitrationQueueDB
getArbitrationQueue(byte[] devicelD)
persist(ArbitrationQueue):void
1
1
DictionaryWrapper

-CosTrading.Lookup m_trader

-ORB m_orb

-java.util.Vector m_dictionaries

-Java.lang.Object m_lock

long m_lastTraderLookupTimestamp

get():DictionaryWrapper 1

setWrapperSettings(ORB, CosTrading.Lookup):void i

setMinimumRediscoveryPeriod(long seconds):void DBConnectionManager

getBannedWords(AccessToken):WordList

removeBannedWordList(AccessToken,WordList):void

addBannedWordList(AccessToken,WordList):void getConnection():java.sgl.Connection

checkForBannedWords(string messageToCheck, releaseConnection();

string delimiters, shutdown();
DictionaryWordType wordType):WordList

getApprovedWords(AccessToken):WordList

addApprovedWordList(AccessToken, WordList):void

removeApprovedWordList(Access Token, WordList):void

performApprovedW ordsCheck(string messageToCheck,

string delimiters,
DictionaryWordType wordType):SuggestionList
-DictionaryWrapper():DictionaryWrapper
-getDictionary():Dictionary

Figure 12. DeviceUtility (Class Diagram)

3.4.1.1.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The arbitration queue
determines the proper message to be displayed on a device and switches the active message
based on conditions present within the system.

R1B2 Servers Detailed Design Rev. 0 3-18 04/17/01

For R1B2, the arbitration queue will have a single slot (and is therefore not really a queue).
The device arbitration rules used by the arbitration queue in R1B2 rely on user rights and
operations centers. When the arbitration queue’s slot is in use, another message can only be
added to the queue if the user adding the message is from the same operations center that is
responsible for the existing message, or the user has a special functional right that allows
this rule to be overridden.

The arbitration queue can be interrupted to keep it from performing its automated
processing. This mode is used to allow maintenance on the device being arbitrated by the
gueue without having the queue’s automatic processing interfere with the maintenance
activities.

When an interrupted arbitration queue is taken out of its interrupted state through the use of
the resume method, the arbitration queue evaluates the messages in the queue and restores
the device to the proper state. For R1B2, the arbitration queue performs no special
processing when resumed because the queue cleans itself when interrupted and does not
allow new entries while interrupted.

3.4.1.1.2 ArbitrationQueueDB (Class)

This class handles the database interaction for the arbitration queue. The HAR module
initializes this class with the HAR database connection. Messages added to the queue are
also added to the database and removed from the database when they are removed from the
queue.

3.4.1.1.3 ArbitrationQueuelmpl (Class)

This class is an implementation of the ArbitrationQueue interface as defined by the IDL.
This class arbitrates the usage of a messaging device (DMS or HAR) among multiple users.
For R1B2, the arbitration algorithm is a “last in wins” scheme, where the last request to use
the device being arbitrated overwrites any previous requests. When an arbitrated device is
in use, the operations center of the requester is used to determine if the request will be
allowed on the queue. Only a user from the same operations center that currently has a
message on a device is allowed to overwrite a previous message. On exception to this is
that users with a special functional right may override messages that were set from
operations centers other than their own.

3.4.1.1.4 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single
traffic event / response plan item. The class holds the associated message, traffic event, and
response plan item.

3.4.1.1.5 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART II system thread requiring database access gets a database

R1B2 Servers Detailed Design Rev. 0 3-19 04/17/01

connection from the pool of connections maintained by this manager class. The connections
are maintained in two separate lists namely, inUseL.ist and freeList. The inUseL.ist contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor
thread that is started by the constructor. This connection monitor thread periodically checks
the inuseL.ist to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

3.4.1.1.6 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic
location of the dictionary and automatic re-discovery should the dictionary reference return
an error. This class also allows for built-in fault tolerence by automatically failing over to a
“working” dictionary without the user of this class being aware that this being done. In
addition, this class defers the discovery of the Dictionary until its first use, thus eliminating
a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently
known good reference to the system dictionary. If the current reference returns a CORBA
failure in the delegated call, this class automatically switches to another reference. When
there are no good references (as is true the first time the object is used), this class issues a
trader query to (re)discover the published Dictionary objects in the system. During a
method call, the trader will be queried at most one time and under normal circumstances
(other than the first use) the trader will not be queried at all.

R1B2 Servers Detailed Design Rev. 0 3-20 04/17/01

3.4.2 Sequence Diagrams

3.4.2.1 ArbQueueProcessing:addEntry (Sequence Diagram)

This diagram shows the processing involved when an entry is added to an arbitration queue.
The arbitration queue blocks the addition of the entry if the user does not have the proper
functional rights or the top entry on the queue is owned by an operations center other than
the requestor’s and the requestor does not have override rights. If the prior checks succeed,
the entry is added to the head of the message queue and any prior entries that are not in
progress or active are notified that they will not be placed on the device. If the queue does
not already have a request to set a message on the device in progress, the abstract evaluate
queue method is called and it performs processing as implemented by the derived class.

X

HARI;FF’{IDaIa ArbitrationQueuelmpl m_lock m_msgQueue ArbQueueEntry TrafficEvent ArbitrationQueueDB
DMSRPIData
addEntry—————>

e [improperrights] i
AccessDenied

[m_interrupted]
CHART2Exception

synchronized————>}

elementAt(

getTrafficEvent

getControllingOpCenter

[op ctr of caller not
equal top of queue op__________
center AND no override]
ResourceControlConflict

getlDr
elementAt
[entry not m_inProgress This processi ng loop removes
A%D e l9 any queue entries that have
ANC no‘ m_dacI Iyedi not yet been sent to the device
getr}?afnf.ilEEseente I because last in wins.

[entry not m_inProgress AND not m_active AND not m_deleted]
[* for each queue entry] addLogEniry
[entry not m_inPrdgress
AND not m_active
AND not m_deleted]

removeAt |
[not removed by above logic] f an ent iote i
N ry already exists in the
geliTrafﬂcEventlD .~ Queue for the traffic eventof
i_[not removed by above logic A_ND traffic event ID equals ID of new entry] ‘ehne‘r'f‘t’,”uf',}‘];yih{;ﬂiﬁg g}:‘:ﬂ?mg
m_updated = true, m_deleted = false flags. Additionally, set the updated
i flag to true and the deleted flag to false.

[entry for traffic ev;gt did not already exist] S

-1 Refer to the ArbQueueProcessing:evaluateQueue
sequence diagram for details.

[not m_inProgress]
evaluateQueue

persist

——end synchronization—>}

Figure 13. ArbQueueProcessing:addEntry (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-21 04/17/01

3.4.2.2 ArbQueueProcessing:asyncMsgChanged (Sequence Diagram)

This diagram shows the processing that occurs when a device detects that its message has
been changed and it notifies the arbitration queue of this condition. This typically only
applies to a polled device, such as a DMS, which may detect a comm failure and then mark
the device blank after the device is comm failed for a pre-determined length of time. When
notified of this condition, the arbitration queue notifies all entries that are currently active
that they are no longer active and removes them from the queue.

E ArbitrationQueuelmpl m_lock m_msgQueue ArbQueueEntry ArbitrationQueueDB
Chart2DMSImpl

[—asyncMsgChanged—>

synchronized

elementAt

[entfy is active and not in progress] S

[*for each queue entry] setlnactive

[entry is active and not in progress] S
remove

persist

end__
synchronlzatlon

Figure 14. ArbQueueProcessing:asyncMsgChanged (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-22 04/17/01

3.4.2.3 ArbQueueProcessing:evaluateQueue (Sequence Diagram)

This diagram shows the processing of the ArbitrationQueue’s evaluateQueue method,
which is abstract and must be implemented by derived classes. The processing done for
derived classes is similar except for the type of device type (and method signature) that is
called to set a message on the device or blank the device. This method decides what action
to take based on the entries on the queue. If the top entry on the queue is not marked for
deletion and is not active, a request is issued to the device to set the message on the device.
If all remaining entries on the queue are marked for deletion (only one possible for R1B2),
a request is sent to blank the device. After the device has processed a request originated
from the arbitration queue, it calls one of the requestSucceeded or requestFailed methods, at
which time the queue performs houskeeping. Refer to the
ArbQueueProcessing:requestSucceeded, ArbQueueProcessing:requestFailed for more

Base class calls HARArbitratiDorn ueuelmpl Chanzgerlepl
the derived class DMSArbitrationQueuelmpl m_msgQueue ArbQueueEntry Chart2DMSImpl
implementation.

ArbitrationQueuelmpl

evaluateQueue—

elementAt(0)

[NOT entry.m_deleted AND
——(NOT entry.m_active OR entry.m_updated)}
m_inProgress = true

[entry set to in progress above]
m_devReqinProgress = true,
m_deviceReqID++ This method has a different ﬁ

signature depending on the
device type (DMS or HAR)

[entry set to in progress above]
setMessageFromQueue

Device object processes

the request asynchronously.
After completion of the request,
the device calls the Arbitration
Queue's requestSucceeded or
requestFailed method. Refer
to specific sequence diagram
for details.

[entry not set to in progress and all existing entries marked for deletion]
lankFromQueue

Figure 15. ArbQueueProcessing:evaluateQueue (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-23 04/17/01

3.4.2.4 ArbQueueProcessing:interrupt (Sequence Diagram)

This diagram shows the processing that occurs when the arbitration queue is interrupted.
The arbitrated device interrupts the arbitration queue when the device is taken offline or put
in maintenance mode to keep the arbitration queue from attempting to put messages on the
device. In R1B2, messages on the arbitration queue are not re-activated so when it is
interrupted it removes each entry and notifies it that it is no longer active.

o

A

Chart2DMSImpl ArbitrationQueuelmpl m_lock m_msgQueue ArbQueueEntry | | ArbitrationQueueDB
or
Chart2HARImpl

interrupt———>}

synchronized—>

remove

[*for each queue entry]
setlnactive

m_interrupted = true

persist

end__
synchronization

Figure 16. ArbQueueProcessing:interrupt (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-24 04/17/01

3.4.2.5 ArbQueueProcessing:removeEntry (Sequence Diagram)

This diagram shows the processing involved when an entry is removed from the arbitration
queue. The ID of the traffic event to be removed is used to find the corresponding queue
entry and the entry is marked for deletion. If an arbitration queue request is in progress, any
action regarding the deletion is deferred until after the current request is completed. If no
request is in progress and the entry being deleted is not active, the entry is removed from
the queue and its traffic event is notified. The abstract evaluateQueue method is then called
which may decide to replace the active message or blank the device.

X

HARFé)I;IData ArbitrationQueuelmpl m_lock m_msgQueue ArbQueueEntry TrafficEvent ArbitrationQueueDB
DMSRPIData
removeEntry—>
—— [improper rights].________
AccessDenied
,,,,,,,,,, [m_interrupted]_________:
CHART2Exception
synchronized
elementAt
getTrafficEvent
[* for each queue entry]
getiD
[ID of traffic event == ID to be removed] S
m_deleted = true, m_updated = false

A [entry not found]
CHART2Exception

[entry.m_active ==

false AND entry.m_inProgress == false]

[entry.m_active == false AND
entry.m_inProgress == false]|——>}

remov

evaluateQueue

setinactive

eAt

........... Refer to the ArbQueueProcessing:evaluateQueue
[NOT m_deviceReqInProg] sequence diagram for details.

r—end synchronization—>}

persist

Figure 17. ArbQueueProcessing:removeEntry (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-25

04/17/01

3.4.2.6 ArbQueueProcessing:requestFailed (Sequence Diagram)

This diagram shows the processing that occurs when an arbitrated device completes a
request from the arbitration queue and the request has failed. When this occurs, the device
calls the arbitration queue’s requestFailed method and indicates if the failure affected the
previous message that was on the sign. The arbitration queue performs some house keeping
on its queue entries, notifying the owner of the message that was being activated of the
failure, and deactivating all other entries if the message on the device is not able to be
determined due to the type of failure. Inactive entries are removed from the queue for in
R1B2 messages are not kept automatically re-activated.

;O:
Chartzc[))}gASImpl ArbitrationQueuelmpl m_lock m_msgQueue ArbQueueEntry ArbitrationQueueDB
Chart2HARImpl 1

requestFailed———>}

*synchronized%j

,,,,,,,,,,, [request ID not equal
i m_deviceReqID]

This should never happen
because we only give the
device one thing to execute i
at a time, however the | elementAt
request IDs are used a: i

a precaution.

[entry.m_inProgress == true]
i setFailed

[entryAm_inProgr‘ess == true]

| Entry could be active
and in progress if it was
being updated.

[*for each queue entry]

[!entry.m_inPfogress AND !prevMsgRemains]
—setlnactive:

[!entryAmfinPro‘gress AND
IprevMsgRemains|—————>
remove

_____ .1 Refer to the ArbQueueProcessing:evaluateQueue
sequence diagram for details.

evaluateQueue

persist:

—end synchronization—>}

Figure 18. ArbQueueProcessing:requestFailed (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-26 04/17/01

3.4.2.7 ArbQueueProcessing:requestSucceeded (Sequence Diagram)

This diagram shows the processing that occurs when an arbitrated device completes a
request from the arbitration queue and notifies the arbitration queue that the request
succeeded. When this occurs, the arbitration queue does housekeeping on its queue entries.
Any entries that were previously marked as active are notified that they are inactive and are
removed from the queue. Any entries that were previously marked as in progress are
marked as active and are notified that they are active. When an entry’s setActive or
setlnactive method is called, a log entry is made in the traffic event and the response plan
item that added the entry to the queue is notified that it is no longer active.

;O:
Chartzc[))}gASImpl ArbitrationQueuelmpl m_lock m_msgQueue ArbQueueEntry ArbitrationQueueDB
Chart2HARImpl
requestSucceeded
—synchronized—>}
,,,,,,,,,,, [request ID not equal .
i m_deviceReqID]
This should never happen
because we only give the
device one thing to execute
at atime, however the | p
request IDs are used & ———————————elementAt————————>} A" | Entry could be active
a precaution. i and in progress if it was
[entry.m_active == true AND entry.m_inProgress != true] .~ being updated.

Setnacuve
* i
[*for each queue entry] [entry.m_active == true AND
entry.m_inProgress != truel——>}

remove

[entry.mfinProgress == true]
m_inProgress = false, m_active = true, m_updated = false, setActivé

_____ .1 Refer to the ArbQueueProcessing:evaluateQueue
sequence diagram for details.
evaluateQueue

persist:

—end synchronization—>}

Figure 19. ArbQueueProcessing:requestSucceeded (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-27 04/17/01

3.4.2.8 ArbQueueProcessing:resume (Sequence Diagram)

This diagram shows the processing that occurs when the arbitration queue is told to resume

its processing. In R1B2, because the queue is emptied when it is interrupted, the only
processing that takes place is to set an internal flag and return.

X

Chart2DMSImpl

or

Chart2HARImpl

ArbitrationQueuelmpl

ArbitrationQueueDB

resume

synchronized

m_interrupted = false

end

persist

R1B2 Servers Detailed Design Rev. 0

synchronization

Figure 20. ArbQueueProcessing:.resume (Sequence Diagram)

3-28

04/17/01

3.5 DictionaryModule

3.5.1 Classes

3.5.1.1 DictionaryModClassDiagram (Class Diagram)

The DictionaryModule is a Service Application module that creates and serves the

Dictionary implementation to the rest of the CHART2 system.

’ ServiceApplicationModule

~

ServiceApplication DictionaryDB
1 DBConnectionManager m_db
DictionaryDB(DBConnectionManager db)
1, : 1 1 | insertBannedWords
DictionaryModule deleteBannedWords
getBannedWords
m_dictionaryimplList checkBannedWords
m_evtChannelNameList insertApprovedWords
deleteApprovedWords
getApprovedWords
checkApprovedWords
1
. 1
PushEventSupplier
1
* 1
Dictionarylmpl
1
m_ID
m_bannedWordList
1’| m_approvedWordList
Dictionarylmpl(DictionaryDB, ServiceApplication,
OperationsLog 1 PushEventSupplier)
1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1

DictionaryWord

string m_word
long m_wordTypeBitmask

getWord():string;
getWordType():long;
factory create(string word, long bitmask):DictionaryWord

Figure 21. DictionaryModClassDiagram (Class Diagram)

R1B2 Servers Detailed Design Rev. 0

3-29

DictionarySuggestion

DictionaryWord m_misspelledWord
WordList m_replacements

getMisspelledWord():DictionaryWord
getReplacements():WordList
factory create(DictionaryWord word,

WordList replacements):DictionarySuggestion

04/17/01

3.5.1.1.1 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that
are approved or banned from being used in a CHARTZ2 messaging device. Examples of
messaging devices are DMS, HAR, etc.

3.5.1.1.2 DictionaryDB (Class)

This class provides API calls to add, remove and retrieve banned words and approved
words from the database. The connection to the database is acquired from the Database
object that manages all the database connections.

3.5.1.1.3 Dictionarylmpl (Class)

This class implements the Dictionary as specified by the IDL. It provides functionality to
add, delete and check for words that are banned or approved from being used in a DMS
message.

3.5.1.1.4 DictionaryModule (Class)

This class implements the Service Application module interface. It publishes the dictionary
implementation.

3.5.1.1.5 DictionarySuggestion (Class)

A DictionarySuggestion represents a list of suggested words that may be used as a
substitute for the word that could not be found in the approved words dictionary database.

3.5.1.1.6 DictionaryWord (Class)

A DictionaryWord represents a word in the chart2 dictionary. It contains information that
qualifies the type of devices that the word applies to.

3.5.1.1.7 OperationsLog (Class)

This class provides the functionality to add a log entry to the CHART 11 operations log. At
the time of instantiation of this class, it creates a queue for log entries. When a user of this
class provides a message to be logged, it creates a time-stamped OpLogMessage object and
adds this object to the OpLogQueue. Once queued, the messages are written to the database
by the queue driver thread in the order they were queued.

3.5.1.1.8 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated

R1B2 Servers Detailed Design Rev. 0 3-30 04/17/01

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

3.5.1.1.9 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.5.1.1.10 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

R1B2 Servers Detailed Design Rev. 0 3-31 04/17/01

3.5.2 Sequence Diagrams

3.5.2.1 DictionaryModule:initialize (Sequence Diagram)

When the DMS service calls the initialize method of Dictionary module, the dictionary
objects are created, connected to the ORB, exported to the CORBA trading service. The
dictionary objects are now available to serve the consumers.

X

Application Service

""" success Tl

DictionaryModule ServiceApplication ORB

CosTrading.Register

DictionaryDB

initialize———>

getORB

getTradingRepos—>

——getDBConnectionManager——=

getEventChannelFactory—=>

Ccreate

PushEventSupplier

getDictionaries

Dictionarylmpl

Create

connect

export

Figure 22. DictionaryModule:initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-32

04/17/01

3.5.2.2 DictionaryModule:shutdown (Sequence Diagram)

When the host service application calls shutdown in the Dictionary module, the dictionary
object is withdrawn from the CORBA trading service and disconnected from the ORB. The
objects are then deleted.

X

Application Service

DictionaryModule

shutdown

Dictionarylimpl CosTrading.Reqgister ORB

withdraw(event channel)

withdraw

delete

X

disconnect

Figure 23. DictionaryModule:shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-33

04/17/01

3.5.2.3 Dictionarylmpl:addApprovedWordList (Sequence Diagram)

The given list of words is added to the approved words dictionary database. The newly
added words are then communicated to the dictionary event consumers by invoking the
push operation. Access is denied to any operator without the “Manage Dictionary”

privilege.
Op:erat:or Dictionarylmpl TokenManipulator DictionaryDB PushEventSupplier OperationsLog
—addApprovedW ordList—>;
checkAccess—=>;
[no access]
log
[no access]
AccessDenied
insertApprovedWords
db Error
[db error]
CHART2Exception

push(ApprovedW ordsAdded)

success

Figure 24. Dictionarylmpl:addApprovedWordList (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-34

04/17/01

3.5.2.4 Dictionarylmpl:addBannedWordList (Sequence Diagram)

The given list of words is added to the banned words dictionary database and the copy of
the dictionary in memory is also updated. The newly added banned words are then
communicated to the dictionary event consumers by invoking the push operation. Access is
denied to any operator without the “Manage Dictionary” privilege.

X

Operator Dictionarylmpl TokenManipulator DictionaryDB PushEventSupplier OperationsLog
[—addBannedW ordList—=>
checkAccess—>
[no access]
[no access] log
AccessDenied
insertBannedWords—————>
db Er:rc”
[db error]
CHART2Exception

push(BannedW ordsAdded)

<o Success T

Figure 25. Dictionarylmpl:addBannedWordList (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-35 04/17/01

3.5.2.5 Dictionarylmpl:checkForBannedWords (Sequence Diagram)

The string provided by the operator is scanned for any banned words by looking up the
database. Any character from the given set of delimiters is taken to be a valid delimiter of
words in the string. The list of banned words present in the string is returned.

X

Operator

[error]

checkForBannedWords——>

Dictionarylmpl

DictionaryDB

"parseString”

——checkBannedWords—=>}

CHART2EXxception

S — List of banned words

The given string is parsed into
----------------------- a list of words. The word delimiters

are specified by the caller.

using "where in" clause to
check for the banned words

> The DictionaryDB object
performs a select query

Figure 26. Dictionarylmpl:checkForBannedWords (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-36

04/17/01

3.5.2.6 Dictionarylmpl:getApprovedWords (Sequence Diagram)

The list of approved words in the dictionary is read from the database and returned to the
operator. Access is denied to any operator without the “Manage Dictionary” privilege.

X

DictionaryDB

OperationsLog

Dictionarylmpl TokenManipulator
Operator tyimp
getApprovedWords—=
——checkAccess—>
[no access]
— [noaccess] ... log
AccessDenied getApprovedWords—>

[db error]

chart2Exception

Figure 27. Dictionarylmpl:getApprovedWords (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-37

04/17/01

3.5.2.7 Dictionarylmpl:getBannedWords (Sequence Diagram)

The list of banned words in the dictionary is read from the database and returned to the
operator. Access is denied to any operator without the “Manage Dictionary” privilege.

X

DictionaryDB

OperationsLog

Dictionaryimpl TokenManipulator
Operator tyimp
getBannedWords—>
——checkAccess—>
[no access]

P [noaccess] .| log

AccessDenied getBannedWords— >

[db error]

chart2Exception

S Banned Words List--1

Figure 28. Dictionarylmpl:getBannedWords (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-38

04/17/01

3.5.2.8 Dictionarylmpl:PerformApprovedWordsCheck (Sequence Diagram)

The string provided by the operator is scanned for any words that are not present in the
approved words dictionary database. Any character from the given set of delimiters is taken
to be a valid delimiter of words in the string. For each word not present in the approved
word list, a list of suggested words is formulated. The suggested words are those in the
approved words dictionary, that have close lexical match with the disapproved word.

X

Operator

Dictionarylmpl DictionaryDB

performApprovedW ords Check————>}

"parseString”

{db error] checkApprovedW ords—=-}

CHART2EXxception

[no disapproved words found]
success

[db error] getApprovedWords—>

CHART2EXxception

[*for each disapproved word)]
getSuggestionsForWord

create

S— DictionarySuggestion List---=-=-==---1

[*for each disapprovedword that has suggestions] S

------------ a list of words. The word delimiters

The given string is parsed into
are specified by the caller.

using "where in" clause to
check for the approved word:

-+ The DictionaryDB object
performs a select query
s.

DictionarySuggestionimpl

Figure 29. Dictionarylmpl:PerformApprovedWordsCheck (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-39

04/17/01

3.5.2.9 Dictionarylmpl:removeApprovedWordList (Sequence Diagram)

The given list of words is removed from the approved words dictionary database. The
removed words are then communicated to the dictionary event consumers by invoking the
push operation. Access is denied to any operator without the “Manage Dictionary”

privilege.
Op:erat:or Dictionarylimpl TokenModifier DictionaryDB PushEventSupplier OperationsLog
F-removeApprovedW ordList=
——checkAccess—>!
[no access]
log
S [noaccess] ...
AccessDenied
deleteApprovedWords
[db error]
chart2Exception
push(ApprovedW ordsRemoved)
log

Figure 30. Dictionarylmpl:removeApprovedWordList (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-40 04/17/01

3.5.2.10 Dictionarylmpl:removeBannedWordList (Sequence Diagram)

The given list of words is removed from the banned words dictionary database. The
removed words are then communicated to the dictionary event consumers by invoking the
push operation. Access is denied to any operator without the “Manage Dictionary”

privilege.
Op:e rat: or Dictionarylmpl TokenModifier DictionaryDB PushEventSupplier OperationsLog
removeBannedWordList=
——checkAccess
[no access]
log
[no access]
AccessDenied
deleteBannedWords
[db error]
chart2Exception
push(BannedWordsRemoved)
log

Figure 31. Dictionarylmpl:removeBannedWordList (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-41

04/17/01

3.6 DMSControlModule

3.6.1 Classes

3.6.1.1 DMSControlClassDiagram (Class Diagram)

This Class Diagram shows the classes of the DMS Control Module. The DMS Control
Module is an installable module that serves the DMS objects and DMSFactory to the rest of
the CHART?2 system. This diagram shows how the implementation of these CORBA
interfaces rely on other supporting classes to perform their functions.

java.util TimerTask

SharedResourceManager

PollDMSTask

Chart2DMSFactoryimpl m_factory

DMSFactory runQ)

CheckCommLossTask

Chart2DMSFactoryimpl m_factory

rung

Chart2DMSFactory
VAN

14 1,

Chart2DMSFactorylmpl

CheckForAbandonedDMSTask

Chart2DMSFactoryimpl m_factory

runQ

DMSControlModuleProperties

DMSConlvo\M.adu\eroperl\es(Pmpemes props,

s defaults)
getcumm\.usschecklmew()
qeu)erauucommLossnmeuuno Tt
getFactoryiD() : b
SEiSharecResoursemonitoringinenval) : it

1 1

Uniquelyldentifiable
CommEnabled

T

1\ \

Chart2DMsS ‘

java.util Properties

/{ DictionaryWrapper
v

1

k|

DMSControlModule

Chart2DMSImpl

ArbitrationQueue

intm_factoryOfferiD;

DMSFactoryimpl m_factory;

dentifier m_id
cnanansconnguramn m_config
st

Thread m_asyncFMSStatusThread
Colection m_dmsList

Chart2DMSFactoryimpl(ServiceApplication,
DMSControlDB, PushEventSupplier,

\CosTvaﬂmg Reeter m adingRegster
Queue m_arbQueut

checkCommLoss() : void
checkForAbandonedDMS() : void
a

TemovEDMS (ChartZDMSimp dms)

DMSControlDB

DBConnectionManager m_db;

trolDatab

1

db)
gelDMSL\le ChanZDNSImpH]
2DMSConfiguration config) : void

de\exeDMS(kjemmev 0o

1
DB

harZDMSConfiguraion
e muso NS
SetConiguration(dentier dms.
MS Configuration config) : void
setStatus(dentifer dms, Chart2DMSStatus status) void

CommandQuete m_cmdQueue
long m_lastContactTime

ArbitrationQueuelmpl
VAN

DMSimp(Confguration, DMSFactary. PushEventSupple,

11
ey, ServceApplcation, DVSConoide) le— omsarbitrat impl
b\ankaomQueueUung reqiD) - Vo itrationQueuelmpl
b\ankamQueue\mp\(CummandS!alus emesias, org i) <vod
‘oken void
checkCommLoss wm FPIS00DMS | ¢ € ©
0 Y0 e token, C cmdstat void evaluateQueue() : void
pulnvanodeimpiAcessToken k) : vod
putOniineimpl(AccessToken token) void
polNowimpi(AccessToken token) : void
vesetC"L:mroHevlmD\(/ﬁ(ﬁcessTukﬁn ioken) vou L
setConfigurationimpl(Access Token token,
MSConfiguration config) v > CommandQueue
sethessageim| p\(AccessToken e LTI g g, "
n beaconState, CommandStalus staius) : void m_commands
sew.essagesvomoueuewcesswkenmken MULTIString mu\nsmng m_shutdown
ommandStatus Stalus, fong realD)
seessagerromQueuelnpi(Access Tolen oker, ML TiStng mumsumg
ConmandStais Statue. 1ong reqiD) Vo addCommand(QueueableCommand cmd)
jown() : vo addCommandOnTop(QueteableCommand cmd)
| S iccessToken token) - void shudown()
Sasa(Oheci oo booean “getNexCommand(:QuetieableCommand
, cmdStatus) : boolean
rcheckResourceCuancl(AccessToken oken, 1\,
andSiatus cmstats) - booean
rhand\eOpSlatuS(ODevanunalstams opStatus,
CommandStatus cmdstatus) : void QueueableCommand
1 1 %
1 1
Chart2DMSStatus ‘ChanZDMSCunﬁguranon
FPOS00DMSimpl
s
FPOS00DMSStatus | | FPOS00DMSConfiguration
o o oo

Figure 32. DMSControlClassDiagram (Class Diagram)

R1B2 Servers Detailed Design Rev. 0

3-42

04/17/01

3.6.1.1.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The arbitration queue
determines the proper message to be displayed on a device and switches the active message
based on conditions present within the system.

For R1B2, the arbitration queue will have a single slot (and is therefore not really a queue).
The device arbitration rules used by the arbitration queue in R1B2 rely on user rights and
operations centers. When the arbitration queue’s slot is in use, another message can only be
added to the queue if the user adding the message is from the same operations center that is
responsible for the existing message, or the user has a special functional right that allows
this rule to be overridden.

The arbitration queue can be interrupted to keep it from performing its automated
processing. This mode is used to allow maintenance on the device being arbitrated by the
queue without having the queue’s automatic processing interfere with the maintenance
activities.

When an interrupted arbitration queue is taken out of its interrupted state through the use of
the resume method, the arbitration queue evaluates the messages in the queue and restores
the device to the proper state. For R1B2, the arbitration queue performs no special
processing when resumed because the queue cleans itself when interrupted and does not
allow new entries while interrupted.

3.6.1.1.2 ArbitrationQueuelmpl (Class)

This class is an implementation of the ArbitrationQueue interface as defined by the IDL.
This class arbitrates the usage of a messaging device (DMS or HAR) among multiple users.
For R1B2, the arbitration algorithm is a “last in wins” scheme, where the last request to use
the device being arbitrated overwrites any previous requests. When an arbitrated device is
in use, the operations center of the requester is used to determine if the request will be
allowed on the queue. Only a user from the same operations center that currently has a
message on a device is allowed to overwrite a previous message. On exception to this is
that users with a special functional right may override messages that were set from
operations centers other than their own.

3.6.1.1.3 CHART2DMS (Class)

The CHART2DMS class extends the DMS interface and defines a more detailed interface
to be used in manipulating the CHART Il-specific DMS objects within CHART II. It
provides a method for getting the DMSArbitrationQueue for a CHART Il DMS, which can
then be used by traffic events to provide input as to what each traffic event desires to be on
the sign. It also provides a method to perform testing on a sign. This method can be
extended by derived classes for specific models of signs, which know how to perform

R1B2 Servers Detailed Design Rev. 0 3-43 04/17/01

certain types of testing on their specific model of sign. CHART Il business rules include
concepts such as shared resrouces, arbitration queues, and linking devices usage to traffic
events, concepts which go beyond what would be industry-standard DMS control.

3.6.1.1.4 CHART2DMSConfiguration (Class)

The CHART2DMSConfiguration class is an abstract class that extends the
DMSConfiguration class to provide configuration information specific to CHART Il
processing. Such information includes how to contact the sign under CHART 11 software
control, the default SHAZAM message for using the sign as a HAR Notifier, and the
owning organization. Such data extends beyond what would be industry-standard
configuration information for a DMS.

3.6.1.1.5 CHART2DMSFactory (Class)

The CHART2DMSFactory class extends the DMSFactory interface to provide additional
CHART Il specific capability. This factory creates CHART2DMS objects (extensions of
DMS objects). It implements SharedResourceManager capbility control DMS objects as
shared resources.

3.6.1.1.6 CHART2DMSFactorylmpl (Class)

The CHART2DMSFactorylmpl class provides an implementation of the
CHART2DMSFactory interface (and DMSFactory interface) as specified in the IDL. The
CHART2DMSFactorylmpl maintains a list of CHART2DMSImpl objects and is
responsible for publishing DMS objects in the Trader on startup and as new DMS objects
are created. Whenever a DMS is created or removed, that information is persisted to the
database. This class is also responsible for performing the checks requested by the timer
tasks: to poll the DMS devices and to look for DMS devices with timeout exceeded or with
no one logged in at the controlling operations center.

3.6.1.1.7 CHART2DMSImpl (Class)

The CHART2DMSImpl class provides an implementation of the CHART2DMS interface,
and by extension the DMS, SharedResource, HARMessageNotifier, CommEnabled,
GeoLocatable, and Uniquelyldentifiable interfaces, as specified by the IDL. The
CHART2DMSImpl contains a CommandQueue object that is used to sequentially execute
long running operations (field communications to the device) in a thread separate from the
CORBA request threads, thus allowing quick initial responses. The CHART2DMSImpl
also contains a DMSArbitrationQueuelmpl, which handles requests from TrafficEvents to
display or remove messages from the signs in online mode. The DMSArbitrationQueuelmpl
validates and arbitrates these requests and makes calls into the CHART2DMSImpl, which
then translates the requests into appropriate QueueableCommand objects (subclasses of
QueueableCommand) ands adds them to the CommandQueue. The CHART2DMSImpl
contains *Impl methods that map to each method specified in the IDL, including requests to
put a message on the sign or remove a message (in maintenance mode only), put the sign
online, offline, or in maintenance mode, or to change (set) the configuration of the sign. All

R1B2 Servers Detailed Design Rev. 0 3-44 04/17/01

of these requests require (or potentially require) field communications to the device, so each
request is stored in a specific subclass of QueueableCommand and added to the
CommandQueue. The queueable command objects simply call the appropriate
CHART2DMSImpl method as the command is executed by the CommandQueue in its
thread of execution. The CHART2DMSImpl also contains methods called by the
CHART2DMSFactory to support the timer tasks of the DMS Service: to poll the DMS
devices and to look for DMS devices with timeout exceeded or with no one logged in at the
controlling operations center. This class contains a DMSConfiguration object and
DMSStatus object, which are used store the configuration and status of the sign, and the it
also contains a lastContactTime value, used for polling and for detecting communications
timeouts.

3.6.1.1.8 CHART2DMSStatus (Class)

The CHART2DMSStatus class is an abstract class that extends the DMSStatus class to
provide status information specific to CHART Il processing, such as information on the
controlling operations center for the sign. This data extends beyond what would be
industry-standard status information for a DMS.

3.6.1.1.9 CheckCommLossTask (Class)

The CheckCommLossTask class is responsible for determining when communications to a
DMS device have been down long enough to decide that the sign is or should be blank or
considered to be blank. The anticipated time interval for making such a determination is on
the order of ten minutes (however, this task is called much more frequently than that, so
that the timeout can be detected soon after it has expired). This class implements the
java.util. TimerTask interface, and as such it contains one method, run(), which is invoked
by Java timer object on a regularly scheduled basis. This class contains a reference to the
CHART2DMSFactorylmpl, which is called upon to actually check the DMS objects each
time this task is called.

3.6.1.1.10 CheckForAbandonedDMSTask (Class)

The CheckForAbandonedDMSTask class is responsible for detecting any DMS device with
a message on it that has no one logged in at the controlling operations center. This would
only occur as a result of an anomaly—such as a reboot of a user’s machine—because
during a normal CHART II logout attempt, the logout is prohibited by CHART Il system if
the the user is the last user on his/her operations center and that operations center is
controlling a sign. However, since anomalies happen, this task runs periodically to look for
abandoned DMS devices. This class implements the java.util. TimerTask interface, and as
such it contains one method, run(), which is invoked by Java timer object on a regularly
scheduled basis. This class contains a reference to the CHART2DMSFactorylmpl, which is
called upon to actually check the DMS objects and controlling operations centers of each
DMS every time this task is called.

R1B2 Servers Detailed Design Rev. 0 3-45 04/17/01

3.6.1.1.11 CommandQueue (Class)

The CommandQueue class provides a queue for QueuableCommand objects. The
CommandQueue has a thread that it uses to process each QueuableCommand in a first in
first out order. As each command object is pulled off the queue by the CommandQueue’s
thread, the command object’s execute method is called, at which time the command
performs its intended task.

3.6.1.1.12 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.6.1.1.13 DMSArbitrationQueuelmpl (Class)

The DMSArbitrationQueuelmpl class is a derivation of the ArbitrationQueue class that is
customized to support DMS objects. It basically operates as a generic
ArbitrationQueuelmpl, but it contains a DMS-specific implementation of the
ArbitrationQueue’s abstract evaluateQueue method. For this release, the only distinct
features of this method (as compared with the HARArbitrationQueuelmpl’s version) is that
the setMessageFromQueue method it calls must be on a DMS type of object, and the
parameters used in calling it for a DMS class is different from calling the
setMessageFromQueue method of the HAR class.

3.6.1.1.14 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART Il system thread requiring database access gets a database
connection from the pool of connections maintained by this manager class. The connections
are maintained in two separate lists namely, inUseL.ist and freeList. The inUseL.ist contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor
thread that is started by the constructor. This connection monitor thread periodically checks
the inuseL.ist to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

R1B2 Servers Detailed Design Rev. 0 3-46 04/17/01

3.6.1.1.15 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic
location of the dictionary and automatic re-discovery should the dictionary reference return
an error. This class also allows for built-in fault tolerence by automatically failing over to a
“working” dictionary without the user of this class being aware that this being done. In
addition, this class defers the discovery of the Dictionary until its first use, thus eliminating
a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently
known good reference to the system dictionary. If the current reference returns a CORBA
failure in the delegated call, this class automatically switches to another reference. When
there are no good references (as is true the first time the object is used), this class issues a
trader query to (re)discover the published Dictionary objects in the system. During a
method call, the trader will be queried at most one time and under normal circumstances
(other than the first use) the trader will not be queried at all.

3.6.1.1.16 DMSControlDB (Class)

The DMSControlDB class provides an interface between the DMS service and the database
used to persist the DMS objects and their configuration and status in the database. It
contains a collection of methods that perform database operations on tables pertinent to
DMS Control. The class is constructed with a DBConnectionManager object, which
manages database connections. Methods exist to insert and delete DMS objects from the
database, and to get and set their configuration and status information. All information
about a sign is persisted, including its current displayed message, communications status,
and time of last contact, so that a momentary glitch or restart of the software will not
interrupt messages on signs.

3.6.1.1.17 DMSControlModuleProperties (Class)

The DMSControlModuleProperties class is used to provide access to properties used by the
DMS Control Module. This class wraps properties that are passed to it upon construction. It
adds its own defaults and provides methods to extract properties specific to the DMS
Control Module.

3.6.1.1.18 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign
(DMS) objects within CHART I1. It specifies methods for setting messages and clearing
messages from a sign (in maintenance mode), polling a sign, changing the configuration of
a sign, and reseting a sign. (Setting messages on a sign in online mode are not accomplished
by manipulating a DMS directly; that is accomplished by manipulating traffic events, which
interfaces with the DMSArbitrationQueue of a sign. This activity involves the DMS
extension, CHART2DMS, which defines interactions with signs under CHART Il business
rules.)

R1B2 Servers Detailed Design Rev. 0 3-47 04/17/01

3.6.1.1.19 DMSControlModule (Class)

The DMSControlModule class is is the service module for the DMS devices and a DMS
factory. It implements the ServiceApplicationModule interface. It creates and serves a
single DMSFactorylmpl object, which in turn serves zero or more CHART2DMSImpl
objects.

3.6.1.1.20 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the
CHART Il system. It also provides a method to get a list of DMS devices currently in the
system.

3.6.1.1.21 FP9500DMS (Class)

The FP9500DMS class extends the CHART2DMS interface and defines a more detailed
interface to be used in manipulating FP9500 models of DMS signs. It is exemplary of
potentially a whole suite of subclasses specific to a specific brand and model of sign for
manufacturer-specific DMS control. For instance, the FP9500DMS has a performPixel Test
method, which knows how to invoke and interpret a pixel test as supported by the FP9500
model DMS.

3.6.1.1.22 FP9500DMSConfiguration (Class)

The FP9500Configuration class is an abstract class that extends the
CHART2DMSConfiguration class to provide configuration information specific to an
FP9500 model of DMS. It is exemplary of potentially a whole suite of subclasses specific to
a specific brand and model of sign for manufacturer-specific configuration information.

3.6.1.1.23 FP9500DMSImpl (Class)

The FP9500DMSImpl class provides a specific implementation to implement the
FP9500DMS interface, providing any specific functionality unique to this brand and model
of sign. This class is exemplary of a whole suite of implementation classes that may be
created, on a case-by-case basis, to support specific capabilities of speciifc brands and
models of signs.

3.6.1.1.24 FP9500DMSStatus (Class)

The FP9500DMSStatus class provides additional storage for status information unique to
the FP9500 model of sign. It is exemplary of potentially a whole suite of
CHART2DMSStatus subclasses specific to a specific brand and model of sign.

3.6.1.1.25 GeolLocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

R1B2 Servers Detailed Design Rev. 0 3-48 04/17/01

3.6.1.1.26 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that
can be used to notify the traveler to tune in to a radio station to hear a traffic message being
broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device
to better determine if activation of the device is warranted for the message being broadcast
by the HAR. This interface can be implemented by SHAZAMSs and by DMS devices that
are allowed to provide a SHAZAM-like message in the absence of any more useful
messages to display.

R1B2 Servers Detailed Design Rev. 0 3-49 04/17/01

3.6.1.1.27 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to
a stream or loaded from a stream. Each key and its corresponding value in the property list
is a string. A property list can contain another property list as its “defaults”; this second
property list is searched if the property key is not found in the original property list.

3.6.1.1.28 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or
recurring execution.

3.6.1.1.29 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one
or more times.

3.6.1.1.30 PolIDMSTask (Class)

The PolIDMSTask class is responsible for polling all the DMS devices. This class
implements the java.util. TimerTask interface, and as such it contains one method, run(),
which is invoked by Java timer object on a regularly scheduled basis. This class contains a
reference to the CHART2DMSFactorylmpl, which is called upon to request each DMS to
poll itself (its poll interval has expired) each time this task is called.

3.6.1.1.31 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

R1B2 Servers Detailed Design Rev. 0 3-50 04/17/01

3.6.1.1.32 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a
CommandQueue for asynchronous execution. Derived classes implement the execute
method to specify the actions taken by the command when it is executed. This interface
must be implemented by any device command in order that it may be queued on a
CommandQueue. The CommandQueue driver calls the execute method to execute a
command in the queue and a call to the interuppted method is made when a
CommandQueue is shut down.

3.6.1.1.33 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.6.1.1.34 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.6.1.1.35 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

3.6.1.1.36 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.6.1.1.37 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure unigueness.

R1B2 Servers Detailed Design Rev. 0 3-51 04/17/01

3.6.1.2 QueueableCommandClassDiagram (Class Diagram)

This class diagram shows the classes derived from QueueableCommand necessary for DMS
Control. A class exists for each type of command that can be executed asynchronously on a
DMS object.

QueueableCommand

execute()

interrupted()
getCmdsStatus():CommandStatus
getToken():byte[]

SetDMSMessageCmd BlankDMSCmd PutDMSOnlineCmd PollDMSNowCmd SetDMSConfigCmd ResetDMSCmd
CommandStatus m_status CommandStatus m_status. C m_status | C m_status CommandStatus m_status
Chart2DMS m_dms CommandStatus m_status CharooNSm ame™ Chart2DMS m_dms Chart2DMS m_dms Chart2DMS m_dms
AccessToken m_token AccessToken m. token AccessToken m, token AccessToken m_token AccessToken m_token AccessToken m_token
MULTIString m_multiMessage boolean m mainiviode = Chart2DMSC m_config
boolean m_beacon - execute() execute() execute()
execute() interrupted() interrupted() execute() interrupted()

exectite() interrupted())
interrupted()

PutDMSInMaintModeCmd
SetDMSMessageFromQueueCmd BlankFromQueueCmd

CommandStatus m_status
CommandStatus m_status CommandStatus m_status Chart2DMS m_dms
Chart2DMS m_dms Chart2DMS m_dms AccessToken m_token
AccessToken m_token AccessToken m_token
MULTIString m_multiMessage long reqiD execute()
boolean m_beacon interrupted()
long reqiD execute()

interrupt()

execute()
interrupted()

TakeDMSOfflineCmd

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token

execute()
interrupted()

Figure 33. QueueableCommandClassDiagram (Class Diagram)

3.6.1.2.1 BlankDMSCmd (Class)

The BlankDMSCmd class is a QueueableCommand subclass that contains data necessary to
send a request to a CHART2DMSImpl to blank the sign in maintenance mode. It is created
by the CHART2DMSImpl during successful processing of its blankSign method. When the
CommandQueue invokes the execute method of this class, it merely calls the
blankSignImpl method of the appropriate CHART2DMSImpl object with the data stored
within this class.

R1B2 Servers Detailed Design Rev. 0 3-52 04/17/01

3.6.1.2.2 BlankFromQueueCmd (Class)

The BlankDMSFromQueueCmd class is a QueueableCommand subclass that contains data
necessary to send a request to a CHART2DMSImpl to blank the sign during normal
operations (online mode). It is created by the CHART2DMSImpl during successful
processing of its blankFromQueue method. When the CommandQueue invokes the execute
method of this class, it merely calls the blankFromQueuelmpl method of the appropriate
CHART2DMSImpl object with the data stored within this class.

3.6.1.2.3 PolIDMSNowCmd (Class)

The PolIDMSNowCmd class is a QueueableCommand subclass that contains data
necessary to send a request to a CHART2DMSImpl to poll its device. It is created by the
CHART2DMSImpl during successful processing of its polINow method in maintenance
mode (triggered by a user request) or during processing of the polllfNecessary method
(triggered by the automatic polling of the PolIDMSTask object). When the CommandQueue
invokes the execute method of this class, it merely calls the polINowImpl method of the
appropriate CHART2DMSImpl object with the data stored within this class.

3.6.1.2.4 PutDMSInMaintModeCmd (Class)

The PutDMSInMaintModeCmd class is a QueueableCommand subclass that contains data
necessary to send a request to a CHART2DMSImpl to put the sign in maintenance mode
(from either offline or online mode). It is created by the CHART2DMSImpl during
successful processing of its putDMSInMaintMode method. When the CommandQueue
invokes the execute method of this class, it merely calls the putDMSInMaintModelmpl
method of the appropriate CHART2DMSImpl object with the data stored within this class.

3.6.1.2.5 PutDMSOnlineCmd (Class)

The PutDMSOnlineCmd class is a QueueableCommand subclass which contains data
necessary to send a request to a CHART2DMSImpl to put the sign online (from either
offline or maintenance mode). It is created by the CHART2DMSImpl during successful
processing of its putDMSOnline method. When the CommandQueue invokes the execute
method of this class, it merely calls the putDMSOnlinelmpl method of the appropriate
CHART2DMSImpl object with the data stored within this class.

3.6.1.2.6 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a
CommandQueue for asynchronous execution. Derived classes implement the execute
method to specify the actions taken by the command when it is executed. This interface
must be implemented by any device command in order that it may be queued on a
CommandQueue. The CommandQueue driver calls the execute method to execute a

R1B2 Servers Detailed Design Rev. 0 3-53 04/17/01

command in the queue and a call to the interuppted method is made when a
CommandQueue is shut down.

3.6.1.2.7 ResetDMSCmd (Class)

The ResetDMSCmd class is a QueueableCommand subclass that contains data necessary to
send a request to a CHART2DMSImpl to put reset the sign (in maintenance mode only). It
is created by the CHART2DMSImpl during successful processing of its resetController
method. When the CommandQueue invokes the execute method of this class, it merely
calls the resetControllerImpl method of the appropriate CHART2DMSImpl object with the
data stored within this class.

3.6.1.2.8 SetDMSConfigCmd (Class)

The SetDMSConfigCmd class is a QueueableCommand subclass that contains data
necessary to send a request to a CHART2DMSImpl to update its configuration (in
maintenance mode only). It is created by the CHART2DMSImpl during successful
processing of its setConfiguration method. When the CommandQueue invokes the execute
method of this class, it merely calls the setConfigurationlmpl method of the appropriate
CHART2DMSImpl object with the data stored within this class.

3.6.1.2.9 SetDMSMessageCmd (Class)

The SetDMSMessageCmd class is a QueueableCommand subclass that contains data
necessary to send a request to a CHART2DMSImpl to put a message on the sign in
maintenance mode. It is created by the CHART2DMSImpl during successful processing of
its setMessage method. When the CommandQueue invokes the execute method of this
class, it merely calls the setDMSMessagelmpl method of the appropriate
CHART2DMSImpl object with the data stored within this class.

3.6.1.2.10 SetDMSMessageFromQueueCmd (Class)

The SetDMSMessageFromQueueCmd class is a QueueableCommand subclass that contains
data necessary to send a request to a CHART2DMSImpl to put a message on the sign
during normal operations (online mode). It is created by the CHART2DMSImpl during
successful processing of its setMessage method. When the CommandQueue invokes the
execute method of this class, it merely calls the setDMSMessageFromQueuelmpl method
of the appropriate CHART2DMSImpl object with the data stored within this class.

3.6.1.2.11 TakeDMSOfflineCmd (Class)

The TakeDMSOfflineCmd class is a QueueableCommand subclass which contains data
necessary to send a request to a CHART2DMSImpl to put the sign offline (from either
online or maintenance mode). It is created by the CHART2DMSImpl during successful
processing of its takeDMSOffline method. When the CommandQueue invokes the execute
method of this class, it merely calls the takeDMSOfflinelmpl method of the appropriate
CHART2DMSImpl object with the data stored within this class.

R1B2 Servers Detailed Design Rev. 0 3-54 04/17/01

3.6.2 Sequence Diagrams

3.6.2.1 DMSControlModule:ActivateHARNotice (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object responds to a request to be
used as a SHAZAM by a HAR. This method is called by the HAR’s
activateMessageNotifier method. The operator (making the original HAR request) must
have proper functional rights for the sign, and the sign must be online. This method creates
a HARNotifierArbQueueEntry and adds it to its own ArbitrationQueue via the
ArbitrationQueue’s addEntry command. (The ArbitrationQueue will not replace a “real”
DMS message with a SHAZAM message. However, for this build if the request is rejected
by the ArbitrationQueue the request is completely tossed out — it is not queued up to wait
for an opportunity later when the other message goes away.) If the ArbitrationQueue
accepts the request, it may eventually by processed by the DMS’s setMessageFromQueue

method.
o
i cmdStatus:
HARIMDI Chart2DMSImpl CommandStatus TokenManipulator DMSArbitrationQueuelmpl
mp

[—activateHARNotice(token, tfcEvent, cmdStatus)—>

checkAccess

[no rights]
[no rights] ——completed("no rights")—>
AccessDenied

[offline or maint mode]

: i ——completed("wrong mode")—=>

[offline or maint mode]
CHART2Exception

—create(tfcEvent, m_Chart2DMSConfig.m_shazamMessage,~ > HARNotifierArbQueueEntry
cmdStatus)

addE ntry(token, HARNOotifierArbQueueEntry)

Figure 34. DMSControlModule:ActivateHARNotice (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-55 04/17/01

3.6.2.1.1 DMSControlModule:BlankFromQueue (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object processes a request to blank
its message while it is online. (For blanking messages in maintenance mode, see blankSign.)
This sequence is actually initiated in the ArbitrationQueue, when it determines that the current
message no longer belongs on the sign, and it has no other message to replace it. The
ArbitrationQueue’s evaluateQueue method calls this method. The DMS must still be online.
There is no operator associated with this request, no functional rights to verify, and no
operator-monitored CommandStatus object to update. A BlankFromQueueCmd (a
QueueableCommand) is created and added to the DMS’s CommandQueue. The
CommandQueue is required since field communications to the sign are relatively slow and can
queue up. When the CommandQueue is ready, it executes the BlankFromQueueCmd, which
calls the BlankFromQueuelmpl method, also shown on this diagram. The
blankFromQueuelmpl method simply calls blankSignNow, and reports success or failure to
the ArbitrationQueue via the requestFailed or requestSucceeded method (at which time the
ArbitrationQueue may re-evaluate its own queue and request another change to the sign).
Althought there is no CommandStatus object directly communicating status of this operation,
the ArbitrationQueue still updates the TrafficEvent(s) that did have control of the sign when
the sign is successfully blanked.

o

1 Chart2DMSImpl This method used o} DMSArbitrationQueuelmpl
al m| oniine only. In maint CommandStatus || CommandQueue itrationQueuelm:
DMSArbitrationQueuelmpl ir:%g%dblankﬂgn T T
blankFromQueue(regID) e - Dummy objects. When BIankFrmeueueCmd B
) [not online] executes, the methods it calls need to have them,
[not online] completed("wrong mode"y——> although the AccessToken isn't used at all and
[<---~CHART2Exception("wrong mode")---- the CommandStatus is written to but not read
by any human or process.
create CommandStatus
AccessToken

create BlankFromQueueCmd

addCommand(BlanijromQueueCmd)

update("command queué d")

CommandQueue executes
command asynchronously.

—execute:

BlankFromQueuelmpt

blankSignNow

[success]
|cquest8ucceedeq(reqlD;

[failure] i

requestFailed(reqiD)

N X X

Figure 35. DMSControlModule:BlankFromQueue (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-56 04/17/01

3.6.2.1.2 DMSControlModule:BlankSign (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object processes a request to
blank its message in maintenance mode. (The analogous method in online is
blankFromQueue.) The DMS must be in maintenance mode, the requesting operator must
have proper functional rights, and if there is a message on the sign from another operations
center, the user must have override authority. This method creates a BlankDMSCmd (a
QueueableCommand) and adds it to the DMS’s CommandQueue. The CommandQueue is
required since field communications to the sign are relatively slow and can queue up.
Requests to communicate with the sign are processed on a first-come, first-served basis.
When the CommandQueue is ready, it executes the BlankDMSCmd, which calls the
blankSignImpl method. The requesting user is kept abreast of progress of the request all the
while, via a CommandStatus object viewable by the user.

R1B2 Servers Detailed Design Rev. 0 3-57 04/17/01

% This method used in maint
mode only. Online, see OperationsLog

SnaneDMsImol i CommandQueue
Operator CharzDMSimpl blankSignFromQueue. CommandQueue
create CommandStatus
—nDblankSign(token, cmdStat)—>} [no rights]
completed
[no rights]
[no rights] log(token, "unauth. attempt to blank DMS <name>")

AccessDenied

[not in maint mode]
completed

[not in maint mode]
CHART2EXxception

This can occur when

the DMS is displaying
amessage in maint mode
that was set by a user
from different op center.

Updates cmdStat L-----
(completed() call)
if conflict found.

checkResourceConflict
(token, cmdStat)

J

-~ [resource conflict]]
-ResourceControlConflict=-

——create——>| BlankDMSCmd

addCommaﬁd(BIankD MSCmdy)

update("command queued")

SR command queued----------

CommandQueue
executes commands
asynchronously

execute
blankSignimp——-
See DMSControlModule:blankSignimpl
......... for details.

completed

delete ><

Figure 36. DMSControlModule:BlankSign (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-58 04/17/01

3.6.2.2 DMSControlModule:BlankSignimpl (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object executes a command to
blank its message in maintenance mode. (The analogous method in online mode is
blankFromQueuelmpl.) An operator request to blank the sign has already been received
and pre-processed by the blankSign method. When the blankSignimpl method runs, it
checks that the DMS is still in maintenance mode (a previously queued command could
have changed it), that the user has rights, and that there is no resource conflict (a previously
queued command could have written a message from an operator at another operations
center). Assuming no problems, the method blankSignNow is called to request FMS to
actually change the sign, update the database, and handle any status change, and push a
CurrentDMSStatus event into the event channel, so that any user (with rights) can
immediately see that the sign is now blank. The requesting user is kept abreast of progress
of the request all the while, via a CommandStatus object viewable by the user.

% Chart2DMSImpl TokenManipulator CommandsStatus | | OperationsLog

BlankDMSCmd This method used in maint mode only. %

blankSignimpl(token, cmdStatusy—>> | For online mode, see blankSignFromQueuelmpl.

[not in maint mode]
. . completed("wrong mode")———>}
S —— [not in maint mode]---------------=------4

Updates cmdStatus
-1 (completed() call)
if conflict found

checkResourceConflict
(token, cmdStatus)

S — [resource conflict]-----------==r=rm=ri

Updates cmdStatus
+1 (update() call) |
OperationsLog, R

updates & pushes new T
blankSignNow DMSStatus if necessary. |\
(token, cmdStatus)

completed("could not blank sign")————>

Figure 37. DMSControlModule:BlankSignimpl (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-59 04/17/01

3.6.2.3 DMSControlModule:BlankSignNow (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object actually blanks the sign.
This is a utility method called at many points during DMS operations. The sign must be
blanked when requested by the user in maintenance mode, when implicitly requested when
online by removing a message, when changing modes (online, offline, maintenance mode),
and when resetting the sign. This method blanks the sign by creating an empty message and
requesting, via FMS, that the sign display the blank message. The method handleOpStatus
handles and responds to any changes to the operational status of the sign (OK, comms
failure, or hardware failure) reported by FMS during this operation. This method writes
progress and status information to a CommandStatus object, so that progress can be
monitored by the user (if any is associated with this operation — there is no user with an
implicit request by the ArbitrationQueue to blank a sign while online). A
CurrentDMSStatus event is pushed into the event channel, so that any user (with rights) can
immediately see that the sign is now blank.

m_status:
DMSControlDB Chart2DMSStatus | pushEventSupplier

OperationsLog

% Chart2DMSImpl | CommandStatus |

Chart2DMSImpl

- c —> sign, after all checks have been performed. This method just
blankSignNow(token, cmdstatus) goes to FMS and does it. This method is called by blankSignimpl,
blankFromQueuelmpl, PutDMSInMaintMode, PutDMSOnline,

This method is called by several mélhods to actually b\ank the
TakeDMSOffline, and resetController.

create a multiMsg
containing the empty string
o« — TP

update("blanking sign”)

_id, agent, community, multiMsg, forever, my addr, beacon)

,,,,,,,,,,,,,,,,,, | Updates cmdStatus, updates

7 | &pushes new DMSStatus
handleOpStatus(result, cmdStatus) if necessary |
e 000]

-] use update() call, not completed(), because this method doesn't know if the operation
is completed or not -- e.g. if taking DMS offline that operation will continue.

[failure blanking sign]
update("blank failed")

<o failure] o
——create DMSMessage with blank multiMsg, beacon false—> DMSMessage

etCurrenth +
tControllingOpCenter(noney

etStatus(m_statu: ,
———————create "Any" DMSEveﬁl of type CurrentDMSStatus——————————— DMSEvent

pus h(CurrentDMSStatusy

log(token, "DMS blanked”

update("sign blanked"y .

. Use update() call, not completed(), because this method doesn't know if the operation
1 is completed or not -- e.g. if changing modes or reseting DMS that operation will continue.

Figure 38. DMSControlModule:BlankSignNow (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-60 04/17/01

3.6.2.4 DMSControlModule:CheckResourceConflict (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object checks a sign for a
resource conflict prior to performing some other sort of operation on it. This utility method
is called from several other methods within the DMS service. If the DMS is currently
displaying a message, and therefore has a controlling operations center, and it is not equal
to the caller’s operations center, and the user does not have override authority, there is a
resource control conflict. Otherwise, there is not. If there is a resource control conflict, a
message to this effect is written to the CommandStatus object, which may be monitored by
the requesting user.

cmdStat:
Chart2DMSImpl TokenManipulator CommandStatus
Chart2DMSImpl

—checkResourceConflict(token, cmdStat)—=

getControllingOpCenter

[no controlling op center]

S A —— no conflict--------=--=--=-=r=r=smoet
[token op center ID == getOpCenterID(token)
controlling op center id]
no conflict
checkAccess(token)

[has override access]

1 — 110100110 e — .
[no override access]
[no override access] ———completed("resource conflict")
conflict

Figure 39. DMSControlModule:CheckResourceConflict (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-61 04/17/01

3.6.2.5 DMSControlModule:CreateDMS (Sequence Diagram)

This Sequence Diagram shows how the DMSFactorylmpl creates a new DMS on behalf of
an operator. The operator must posess the proper functional rights to create a DMS. The
request to create a new DMS contains all data necessary to create it in a DMSConfiguration
object—most likely one of some specific subclass, such as FP9500DMSConfiguration
(unless it is to be a truly generic CHART2DMS, one which has no extended capabilities, or
one of a new type whose extended capabilities are not yet encoded in CHART I software).
When a request to create DMS is received by the DMSFactory, the DMSControlDB is
asked to create and persist it to the database. A (subclassed) CHART2DMSImpl object and
its corresponding DMSArbitrationQueuelmpl and CommandQueuelmpl are created, and
the CommandQueue thread is started. Information about the new DMS is also
communicated to the FMS subsystem. The object is connected to the ORB and is ready for
operations. A DMSAddedEvent is then pushed into the event channel. A DMS is initially in
offline mode when it is created.

£

ORB

DMSControlDB

TokenManipulator

DMSFactoryimpl ServiceApplication | PushEventSupplier || OperationsLog

[-createDMS (token, configy—4

[no rights]
ken, "o rights")

[norights] Jog(tol
S Access Denied— >

DMS (new id, config)

DB error] .
[<-——CHART2Exception-—— 0B error}

).
‘The DMSControlDB knows what subclass to create based on the subclass
.| of Chart2DMSConfiguration passed in (such as FP9500DMSConfuguration).
| (The DMSControlDB also has to use this sort of logic on startup when creatin
DMS Impl objects from persisted DMS information stored in the database:

This is really a subclass of Chart2DMSImpl (such as FP9S00DMSImpl
9

creat Chart2DMSImpl

7creale% DMSArbitrationQueuelmpl

This starts the CommandQueue's
thread of execution, looking for
to run and processing them.

/1 CommandQueue

insertDMS returns the specific Impl object
as a generic Chart2DMSImpl

:_object (DMS,

registerObject (DMS)

[success]
n, "DMS ci

log(tok eated")

Figure 40. DMSControlModule:CreateDMS (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-62 04/17/01

3.6.2.6 DMSControlModule:DeactivateHARNotice (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object responds to a request to
discontinue operation as a SHAZAM for a HAR. This method is called by the HAR’s
deactivateMessageNotifier method. The operator (ending the HAR message) must have
proper functional rights for the sign, and the sign must be online. This method calls the
ArbitrationQueue’s removeEntry command to handle the request, and the ArbitrationQueue
will respond (now or later) with another setMessageFromQueue or blankFromQueue
request, as appropriate.

E cmdStat: o
DMSArbitrationQueuelmpl

Chart2DMSImpl CommandStatus TokenManipulator
HARImpl

[—deactivateHARNotice(token, tfcEvent, cmdStat)—>

checkAccess

[no rights]
completed—>}

[no rights]
5 — AccessDenied-=rrmrrmsessesene

[offline or maint mode]
completed

[offline or maint mode]
S — CHART2Exception:=--====-==s=rr=sareey

removeEntry (token, tfc Event)—l/é

For details, see the sequence diagram
DeviceUtility/ArbitrationQueueProcessing:RemoveEntry.

Figure 41. DMSControlModule:DeactivateHARNOotice (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-63 04/17/01

3.6.2.7 DMSControlModule:GetConfiguration (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object responds to a request for
its configuration. Its configuration is always maintained in current form in a
CHART2DMSConfiguration object, so this object is just returned immediately.

Chart2DMSImpl

—getConfiguration(token)—>

[no rights]

<--Chart2DMSConfiguration---

TokenManipulator

OperationsLog

—checkAccess(token)—=>

[no righ

log(token, "unauth. a

ts]
ccess attempt")—>

object.

This object is always kept up to date
throughout the life of the Chart2DMSImpl.
All that needs to be done is to return the
existing, current Chart2DMSConfiguration

Figure 42. DMSControlModule:GetConfiguration (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-64

04/17/01

3.6.2.8 DMSControlModule:GetControlledResources (Sequence Diagram)

This Sequence Diagram shows how the CHART2DMSFactorylmpl handles a request to get
a list of controlled resources for an operations center. The CHART2DMSFactorylmpl
simply asks each CHART2DMSImpl for its controlling operations center, and if it matches
the OperationsCenter in question, the DMS is added to a list. This list is returned to the
caller.

-1 Chart2DMSFactorylmpl Chart2DMSImpl

—getControlledResources (op ctr)—=

—getControllingOpCenter—>

[*for
each -
[controlling op ctr ==
DMS] op ctr]
(add to list)

<-----DMSList of controlled resources---

Figure 43. DMSControlModule:GetControlledResources (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-65 04/17/01

3.6.2.9 DMSControlModule:GetStatus (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object responds to a request for
its status. Its status is always maintained in current form in a CHART2DMSStatus object,
so this object is just returned immediately.

Chart2DMSImpl

TokenManipulator

OperationsLog

——getStatus—>}

<-Chart2D MSS_:tatus--

™ This object is always kept up to date
throughout the life of the Chart2DMSImpl.
All that needs to be done is to return the
existing, current Chart2DMSStatus object.

Figure 44. DMSControlModule:GetStatus (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-66

04/17/01

3.6.2.10 DMSControlModule:HandleOpStatus (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl handles the important task of
detecting and responding to changes in its operational status (whether it is in “OK”,
“COMM_FAILURE” or “HARDWARE_FAILURE” status). A DMS is normally “OK?”,
but falls into “COMM_FAILURE” when FMS reports that it cannot communicate with the
device, and into “HARDWARE_FAILURE” when the FMS can communicate with the
device but the device or FMS is detecting some sort of hardware problem with the device
itself. At this point, HARDWARE_FAILURE and COMM_FAILURE are treated virtually
identically. This method is called, with the status reported back from FMS, after every
attempt to communicate with the device, and processing falls into one of three cases,
depending on the status reported (although the two failure cases are nearly identical).

If the device now being reported OK and it was already OK, there is no change in status,
and all that is necessary is to update the m_lastContactTime of the device. (This variable is
used to determine when to poll [see runPolIDMSTask] and when to declare that a
“Communications Timeout” has occurred [see runCheckCommLossTask].) If the status has
just become OK, this fact is logged, and the new DMSStatus is persisted and pushed out
into the event channel. A request is added to the CommandQueue to poll the device as soon
as possible to determine exactly what the status of the sign is. (This is the one exception to
the rule that commands on the CommandQueue are processed first-in, first out. The poll
command is inserted at the top of the queue so that it is the next command to execute. The
DMS cannot easily be polled at this point, because there may be an operation in progress,
but in the interest of timeliness, we want to poll ASAP.) Finally, the ArbitrationQueue is
notified, so that if there has been a message up on the sign it can notify the controlling
TrafficEvent(s) (this is for logging purposes only, it takes no other action).

If the device is now being reported with a failure and the device was already in that failure
condition, there is no change in status, and nothing is done. If the status is just now
changing, this is logged, and the DMSStatus is persisted and pushed out into the event
channel. Finally, the ArbitrationQueue is notified, so that if there has been a message up on
the sign it can notify the controlling TrafficEvent(s) (this is for logging purposes only, it
takes no other action). Note that if the device has gone into COMM_FAILURE, and it
remains in this condition for the timeout period, the CheckCommLossTask’s run method
will detect and handle it (see runCheckCommLossTask). Until the timeout period expires, it
is assumed that the message is still on the sign, so no further action is taken now. If the
device has gone into HARDWARE_FAILURE, FMS is still in contact with it, and changes
in status (e.g., loss of a message) can be detected by other means, for instance, by polling
(see runPolIDMSTask)

R1B2 Servers Detailed Design Rev. 0 3-67 04/17/01

m_status: §
CharZDMSImpl DMSStatus CommandQueue DMSAvbiualiDnQueuelmgll PushEventSupplier | | DMSControlDB OperationsLog ‘
Chart2DMSImpl
cmdStatus:
handle ik CommandStatus
—
| if opStatus == OK %
| EE—

opStatus OK and unchanged m lastContattTime = now
e

~[m_status.m_opStatus == OK]-

OpStatus(OK)

——setStatusChangeTime(now)—>

_id, m_status)

3

urrentD|

update("DMS now OK"y "1 Poll device ASAP to make sure we have its complete status and config.

- If the message doesn't match, poll will catch it and inform Arb Queue.|
-addCommandOnTop(PollDMSNowCmd| (For instance, if we have blanked due to commLossTimeout, but the sign
still displays a message, that will be caught and corrected by the poll.

log("DMS now i Y +

-asyncD 15("DMS <name> now OK")

This informs the acli\)e trafficEvent(s)
(if any) that the device is OK again.

—
If opStatus == COMM_FAILURE B

Bad status has been handled previously.
No need to do anything more.

m_status.m_opStatus == COMM_FAILURE}-—~
—setOpStatus(COMM_FAILURE)—>}

——setStatusChangeTime(now)—=>

_id, m_status)

NOTE: if we remain in COMM_FAILURE for B urrentD|
the commLossTimeout period, the
CheckCommLossTask will detect it and
handle that situation.

update("DMS just CommFailed"y———>

log("DMS has just lost comms")

-asyncDeviceStatus("DMS ?name> comms failure detected"y

= This informs the active trafficEvent(s) D
(if any) of the comms failure. 1

—
| If opStatus == HW_FAILURE h‘
| I

e

Bad status has been handled previously.
No need to do anything more.

~[m_status.m_opStatus == HW_FAILURE]~
——setOpStatus(HW_FAILURE)—>
——setStatusChangeTime(now)—>

_id, m_status)
urrentD|
NOTE: if we remain in HW_FAILURE for F—update("DMS just reported HW failurey—}
the commLossTimeout period, the i ” .
CheckCommLossTask will detect it and 7 log("DMS has just gone into HW failure")
handle that situation. I |
- -asyncD "DMS <name> hardware failure detected")

This informs the active trafficEvent(s)
(if any) of the hardware failure.

Figure 45. DMSControlModule:HandleOpStatus (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-68 04/17/01

3.6.2.11 DMSControlModule:HasControlledResources (Sequence Diagram)

This Sequence Diagram shows how the CHART2DMSFactorylmpl handles a request to see
if an operations center has any controlled resources. The CHART2DMSFactorylmpl simply
asks each CHART2DMSImpl for its controlling operations center, and if it matches the
OperationsCenter in question, a value of true is immediately returned to the caller. If the
CHART2DMSFactorylmpl makes it through its whole list of DMS objects without finding
an OperationsCenter match, a value of false is returned.

Chart2DMSFactorylmpl Chart2DMSImpl
ORB

hasControlledResources (op ctr)y——————>!

[* for each DMS]
getControllingOpCenter————>

[*for each
[controlling op ctr == op ctr] DMS
true

false One is enough to return "true"

".._ | Break out of loop once a
1 controlled resource is found.

Figure 46. DMSControlModule:HasControlledResources (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-69 04/17/01

3.6.2.12 DMSControlModule:Initialize (Sequence Diagram)

This Sequence Diagram shows how the DMSControlModule is started. This module is
created by a service application that will host this module’s objects. A ServiceApplication
is passed to this module’s initialize method and provides access to basic objects needed by
this module. This module creates a DMSFactory, which creates the known DMS objects,
which have been persisted into the database. The DMSFactory and DMS objects are
published via the CORBA Trading Service to make them available for general status
updates and as candidates for control (given the proper access rights). In addition to
servicing CORBA requests, this service also performs regularly recurring maintenance
functions controlled by timer tasks started by this initialize method.

DMSC ‘ Sen ‘

ServiceApplication
F—getDefaultProperties—
getProp
.‘ DMSC ies
F-getEventChannelFactory—>}
reat 1J . Two -- one for DMSs for status/configlexistence changes,
@ “+~..._._| one for the Module for abandoned DMSs (active DMSs with
mﬂi‘ﬁéﬁ!&"ﬁ““e'4 = no one logged in at the controlling Op Ctr) (resourcMgtEventChannel).
" (EventChannel) >
getDBConnectionManager->
‘getOperationsLog——>| This is really a subclass of Chart2DMSImpl (such as FP9500DMSImpl).
The DMSControlDB knows what subclass to create based on data
DMSControlDB stored in the database when the DMS was initially created and
persisted. (At the DMS creation time, the DMSControlDB knows what
specific type of Impl to create based on the subclass o
Chart2DMSConfiguration passed in (such as FP9500DMSConfuguration).)
getPOA POA 7

ate \J‘ DMSFactoryimpl
EMS

—create

DictionaryWrapper
getDMSObjects—— d -
at " Chart2oMSimpl | |
..... DMSArbitrationQueuelmpl
[*for
each
ove Commandoueue
S
<—activate_object— [*for
(DNS) each
registerObject(D object]
activate_object (DMSF:
registerObject(DMSFactory)
i To periodically check for comm To periodically have each DMS check to see To periodically check for
creat java.util.timer .~ loss timeout and blank the sign. if it is time to poll (poll interval expired) and active DMSs with no one logged
|41 pollif y. in at the controlling Op Ctr.
creats CheckCommLossTask e
reate—1 >{ Cl IDMSTask
PolDMSTask

Figure 47. DMSControlModule:Initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-70 04/17/01

3.6.2.13 DMSControlModule:PolINow (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object responds to a request by
an operator to immediately poll the device. The DMS must be in maintenance mode and
operator must posess proper functional rights. This method creates a PolIDMSNowCmd (a
QueueableCommand) and adds it to the DMS’s CommandQueue. The CommandQueue is
required since field communications to the sign are relatively slow and can queue up.
Requests to communicate with the sign are processed on a first-come, first-served basis.
When the CommandQueue is ready, it executes the PolIDMSNowCmd, which calls the
polINowImpl method. The requesting user is kept abreast of progress of the request all the
while, via a CommandStatus object viewable by the user.

Chart2DMSImpl

X

TokenManipulator

ORB

CommandQueue

Create
F——pollNow(token, cmdStatus)—=>}

[not in maint mode]
[<---CHART2Exception("wrong mode")--

completed("wrong

—checkAccess(token)—>

[not in maint mode]

CommandStatus

mode")—>

[no rights]

[no access]
S — AccessDenied------=---=1 '

[no rights]

completed("no rights")——>

OperationsLog

log(token, "no rights")

Create

addCommand(PolIDMSNowCmd)————>}

PollDMSNowCmd

Command is executed
asynchronously.

.

execute

pollNowImpt

e For details, see the sequencé diagram
~{ DMSControlModule:PollNowImpl.

Aolat
delete

X

—deletHX

Figure 48. DMSControlModule:PolINow (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-71

04/17/01

3.6.2.14 DMSControlModule:PolINowImpl (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object implements the polling of
the DMS device. The poll request could come from the operator (via the polINow method)
or from the automated polling thread within the DMS service itself (PolIDMSTask’s run
method). The polINowImpl method issues a ForcedPoll request to FMS and calls the
method handleOpStatus to detect and handle any changes to the operational status of the
sign (OK, comms failure, or hardware failure) reported by FMS during this operation. The
status returned is persisted to the database and pushed out as a CurrentDMSStatus event on
the event channel. Updates are also written to a CommandStatus object, so that if a user
issued this request, he or she can see monitor its progress.

CommandStatus | EMS | |DMSArbitralionQueuellel DMSControlDB | | PushEventSupplier

i Chart2DMSImpl

PolIDMSNowCmd

[—polINowImpl(token)—>
[offline]
completed("offline")

<-oreree[offlin oo
forcedPolt
[failure]
171 Updates cmdStatus
| on status change.
handleOpStatus(failure type, cmdStatus)
<]
completed(“failed")
S [failure}--------------1

[success]

P
handleO pSlatusSOK, cmdStatus) 5

[no change in status]
——completed("success, no status change")—>{

Updates cmdStatus, updates &
pushes new DMSStatus on status change.

[<----[no change in status]-

updateStatus(m_status)

DMSEvent

create "Any" DMSEvent of type CurrentDMSStatus)

push (CurrentDM: 1)
—completed("poll complete, change detected")—>; i
[msg on DMS not as expected] See ArbitrationQueue
asyncMsgChanged("DMS <name>: message unex. changed to <text>"y—————>h- e processing to see how
i this message is handled.

Figure 49. DMSControlModule:PolINowImpl (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-72 04/17/01

3.6.2.15 DMSControlModule:PutDMSInMaintMode (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object responds to a request by a
user to go into maintenance mode. The requesting operator must have proper functional
rights, and if there is a message on the sign from another operations center, the user must
have override authority. And of course the sign must not be in maintenance mode already,
otherwise the request is redundant. The ArbitrationQueue is interrupted, so that it will stop
attempting to modify the sign (as it does in online mode). A PutDMSInMaintModeCmd (a
QueueableCommand) is created and added to the DMS’s CommandQueue. The
CommandQueue is required since field communications to the sign are relatively slow and
can queue up. When the CommandQueue is ready, it executes the
PutDMSInMaintModeCmd, which calls the putinMaintModelmpl method, also shown on
this diagram. The putinMaintModelmpl method double checks to make sure it is not
already in maintenance mode (from some other queued command). Assuming no problems,
the method blankSignNow is called to request FMS to actually blank the sign, update the
database, and handle any status change, and push a CurrentDMSStatus event into the event
channel, so that any user can immediately see that the sign is now blank. Regardless of
whether blankSignNow works, the method continues on, since the sign may likely be non-
functional when it is put in maintenance mode. The DMSStatus is updated to show that the
sign is in maintenance mode, it is persisted to the database, and it is pushed into the event
channel. The requesting user is kept abreast of progress of the request all the while, via a
CommandStatus object viewable by the user.

R1B2 Servers Detailed Design Rev. 0 3-73 04/17/01

% Chart2DMSImpl C | DMSArbil Queue | | CommandQueue EmMs | PushEventSupplier | | TokenManipulator | DMSControlDB | | OperationsLog
ORB
putinMaintModetoken, cmdstat)>
[no rights]
[no rights] 'no rights”)
[already in maint mode]
[already in maint mode] —completed(“arealdy in maint mode"y—>}
~CHART2Exception .
[resource conflict] Interrupt the ArbitrationQueue
R ontrolC so it doesn't iry to
[resource conflict] put any more messages on the sign
[resource conflict] completed("resorce conflict’)————= (even though the TakeDMSOffline
[<———ResourceControlConflict- command might not be executed
normal return for a while).
reate PutD md
update("command queued"y———4
CommandQueue executes i
command asynchronously.
execute
[already in maint mode]
—completed("already in maint mode")—
- [already in maint mode}-—>}
—{alreaady in maint mode}———
update("putting in maint mode"y——
blankSignNow We continue on regardless of whether blankSignNow() works. We don't want
(cmdStat) to stop a sign from going into maintenance mode because it doesn't work.
m_status.m_opStatus =
MAINT_MODE
_status)
og(token, "DMS put in maint mode"y
——completed("now in maint mode")—>}
create "Any" DMSEVent of type CurrentDMSStatus
urrentD

Figure 50. DMSControlModule:PutDMSInMaintMode (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-74 04/17/01

3.6.2.16 DMSControlModule:PutDMSOnline (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object responds to a request by a
user to go online. The requesting operator must have proper functional rights, and if there is
a (maintenance mode) message on the sign from another operations center, the user must
have override authority. And of course the sign must not online already, otherwise the
request is redundant. A PutDMSOnlineCmd (a QueueableCommand) is created and added
to the DMS’s CommandQueue. The CommandQueue is required since field
communications to the sign are relatively slow and can queue up. When the
CommandQueue is ready, it executes the PutDMSOnlineCmd, which calls the
putOnlinelmpl method, also shown on this diagram. The putOnlinelmpl method double
checks to make sure it is not already online (from some other queued command). Assuming
no problems, the method blankSignNow is called to request FMS to actually blank the sign,
update the database, and handle any status change, and push a CurrentDMSStatus event
into the event. If blankSignNow does not work, the sign cannot be brought online, and the
method ends. The DMSStatus is updated to show that the sign is online, it is persisted to the
database, and it is pushed into the event channel. Finally the ArbitrationQueue is resumed,
so that it can evaluate its queue and determine if it has a message to display on the sign. The
requesting user is kept abreast of progress of the request all the while, via a
CommandStatus object viewable by the user.

R1B2 Servers Detailed Design Rev. 0 3-75 04/17/01

% Chart2DMSImpl TokenManipulator DMSArbitrationQueuelmpl | | CommandQueue DMSControlDB | | PushEventSupplier I OperationsLog
Operator
create CommandStatus
[—putOnline(token, cmdStat))—> L
—checkAccess(token)—>}
[no rights]
o rights”) [no rights]
[no rights] + log(token, "unauth. attempt to put DMS <name> online"
AccessD |
[already online]
[already online] ——completed("already online")
~~CHART2EXxception- - i

Updales cmdStatus
if conflict found
(completed() call).

|
checkResourceConflict

(token, cmdStat)

reate:){

-add ommand(PutDMSOnllneémd,

-update("command queued"y

CommandQueue executes b
command asynchronously. 1

execute-

putOnlir

Impt

[already online]
-completed("already online")

{already online]

already online}----

update("putting online"y

blankSignNow' Updates
(cmdStat) cmdStat

[failure]
-completed("could not blank sign")

If we can not even blank the sign,
no point in putting it online. Return.

failure}
[failure}
m_status.m_opStatus
= ONLINE
_status)
og(token, "DMS put online")
| Tell the Arb Queue to start re-evaluating its queue
resume to see if it has something to put on the sign.

create "Any" DMSEvent of type DMSStatusChanged——————

push (DI anged)

"success"y

~—return from putOnlinelmpl(y

delete >< ><é—dele1r
Figure 51. DMSControlModule:PutDMSOnline (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-76 04/17/01

3.6.2.17 DMSControlModule:RemoveDMS (Sequence Diagram)

This Sequence Diagram shows how the DMSFactorylmpl removes a DMS from the system
on behalf of an operator. A DMS must be offline to be removed, and the requesting
operator must posess the proper functional rights. The DMSFactory remove the reference to
the DMSImpl from its internal list of DMSs, remove the DMSImpl and its associated
information from the database removes it from the FMS subsystem, and withdraws the

DMS’s offer from the trading service. A DMSDeletedEvent is then pushed into the event
channel.

X

ORB

Chart2DMSImpl |

TokenManipulator

CommandQueue || Chart2DMSFactorylmpl

CosTrading.Reqister

EMS ||

o

PushEventSupplier | | OperationsLog

0A | | DMSControlDB

remove

[no rights]
no rights] log(token, "unauth. attempt to remove DMS <name>")
~AccessDenied

[not offline]
|- Chart2Exception—-

removeDMS

[not found] [not found]
&~ Chart2Exceptior— hart2Exception

withdraw———>1
removeDMS (FMS Device ID

ivate_object:

:::::: DMS (DMS ID)

ke
C]
=
1]
o
o
o
b5
8

og(token, "DMS <name> removed"y

X

Figure 52. DMSControlModule:RemoveDMS (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-77 04/17/01

3.6.2.17.1 DMSControlModule:ResetController (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl responds to a request to reset a
DMS. The DMS must be in maintenance mode, the requesting operator must have proper
functional rights, and if there is a (maintenance mode) message on the sign from another
operations center, the user must have override authority. This method creates a
ResetDMSCmd (a QueueableCommand) and adds it to the DMS’s CommandQueue. The
CommandQueue is required since field communications to the sign are relatively slow and
can queue up. Requests to communicate with the sign are processed on a first-come, first-
served basis. When the CommandQueue is ready, it executes the ResetDMSCmd, which
calls the resetControllerImpl method, also shown on this diagram. When the
resetControllerimpl method runs, it checks that the DMS is still in maintenance mode (a
previously queued command could have changed it), and that there is no resource conflict
(a previously queued command could have written a message from an operator at another
operations center). Assuming no problems, the method blankSignNow is called to request
FMS to actually change the sign, update the database, and handle any status change, and
push a CurrentDMSStatus event into the event channel, so that any user (with rights) can
immediately see that the sign is now blank. Then the FMS is requested to reset the device
with the FMS’s resetController method. The requesting user is kept abreast of progress of
the request all the while, via a CommandStatus object viewable by the user.

R1B2 Servers Detailed Design Rev. 0 3-78 04/17/01

o

CommandQueue
Operator

TokenManipulator

EMS | | DMSControlDB |

create: 7‘ CommandStatus
resetController————>
)) [not in maint mode]
[not in maint mode] completed(“wrong mode")
S CHART2Exception:------------- ~checkAccess
) [no rights]
[no rights] ———————completed("no rights")——>
AccessDenied i

Happens if user from B

Updates cmdStatus
another op ctr has msg if conflict found.
on DMS in maint mode. checkResourceConflict

(token, cmdStatus)

[resource conflict]
Sl ResourceControlConflict-

addCommand

update("command

queued)——>

CommandQueue executes
command asynchronously.

<—exec| ule'—

<—resetControllerimpl—;

[not in maint mode]
[not in maint mode]

completed(“wrong mode"
[<—CHART2Exception("wrong mode")7 |

* S Updates cmdStatus
if conflict found. r
gnag;‘ea&ﬁ%:] %?sqeudeued checkResourceConflict;
up commands.

(token, cmdStatus)

[resource conflict]
--ResourceControlConflict-

update(“resetting

g signy——— >

blankSighNow updates BL

blankSignNow(cmdStatus)

cmdStatus & DB as necessary.

We continue with the attempt to reset the controller
regardless of whether blankSignNow() works.

(Perhaps they are resetting the DMS because they
can't write to it.)

resetController

getStatu:

completed("success

or failure"y——— >

><e—de lete—

delete ><
Figure 53. DMSControlModule:ResetController (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-79 04/17/01

3.6.2.18 DMSControlModule:RunCheckCommLossTask (Sequence Diagram)

This Sequence Diagram shows how the CheckCommLossTask object executes its task
when directed to run by the Java timer object. The run method of CheckCommLossTask
calls the checkCommLoss method of CHART2DMSFactorylmpl, which calls
checkCommLoss on each DMS. Each CHART2DMSImpl object immediately returns if its
m_lastContactTime variable indicates that it has had some (any) communication with the
device within the Comm Loss Timeout period. If the timeout has been exceeded and there
was a message on the sign, the CHART2DMSStatus is updated to reflect a blank message
and no controlling operations center, this fact is logged, and the new status is persisted and
pushed into the event channel. (If the timeout has been exceeded, but there is no message
on the sign, there is nothing to do and no one to notify. The COMM_FAILURE status has
already been detected, on the first failed poll if nothing else.)

OperationsLog

m_status:
ChanZDMSFaclovylmglI Chart2DMSImpl Chart2DMSStatus | DMSControlDB " PushEventSupplier " DMSNbitva{iongueuelmgll

;Ot | CheckCommLossTask I

java.util. Timer
F—run()—>

—checkCommLoss()—>

.| fwe've had contact within the comm loss timeout period, return.

ommLoss()
ic-....[nOW - m_lastContactTime <__i.
m_config.m_dmsTimeCommLoss]

Even if we've exceeded the timeout, if |h§ve is no message or
the sign, there is nolhing to do.

{no message on sign}

needs to be blanked. At this time we consider the sign to be blanked -- whether or not the sign supports a capability to blank
itself after a comm loss timeout period -- because when the sign comes back online after being out of contact this long we will

We have not had any contact with the sign for the dmsTimeCommLoss period, and there is a message on the sign which now
blank it anyway.

[for each ——setDMSMessage(blank)
DMS] i—setControllingOpCenter(none)—>

-setDMSStatus(m_id, m_status)

L create "Any” DMSEvent of type CurrentDMSStatus—3

push(Cuv‘emE

g("comm loss timeout exceeded, sign assumed blank")

Figure 54. DMSControlModule:RunCheckCommLossTask (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-80 04/17/01

3.6.2.19 DMSControlModule:RunCheckForAbandonedDMSTask (Sequence Diagram)

This Sequence Diagram shows how the CheckForAbandonedDMSTask object executes its
task when directed to run by the Java timer object. The run method of
CheckForAbandonedDMSTask gets the controlling op center of each DMS and builds a list
of OperationsCenter objects with control one or more signs. Each OperationsCenter is then
queried for the number of users logged in. If the number of users at an OperationsCenter is
zero, this fact is logged and an UnhandledControlledResources event is pushed into the
event channel.

; : CheckForAbandonedDMSTask Chart2DMSFactorylmpl DMSImpl CosTrading.Lookup PushEventSupplier OperationsLog
java.util. Timer
run()y
+—checkForAbandonedDMS()—>}

[*for each DMS]
——getControllingOpCenter—>

[*for each unique op ctr ID]
query(op center where ID = op center IDs)

OperationsCenter

getNumLoggedinUser
[*for each
op ctr
which
controls [no users]
at least push (UnhandledControlledResourcesEvent)
one DMS] [no users]
log

Figure 55. DMSControlModule:RunCheckForAbandonedDMSTask (Sequence
Diagram)

R1B2 Servers Detailed Design Rev. 0 3-81 04/17/01

3.6.2.20 DMSControlModule:RunPolIDMSTask (Sequence Diagram)

This Sequence Diagram shows how the PolIDMSTask object executes its task when
directed to run by the Java timer object. The run method of PolIDMSTask calls the
polIDMSes method of CHART2DMSFactorylmpl, which calls pollIfNecessary on each
DMS. Each CHART2DMSImpl object immediately returns if its m_lastContactTime
variable indicates that it has had some (any) communication with the device within the poll
interval period. If it has been longer than the poll interval since the last communcation with
the device, this method creates a PolIDMSNowCmd (a QueueableCommand) and adds it to
the DMS’s CommandQueue. The CommandQueue is required since field communications
to the sign are relatively slow and can queue up. Requests to communicate with the sign are
processed on a first-come, first-served basis. Most likely, the CommandQueue is empty
(which is why a need to poll is indicated), but any communication with the device will have
the desired effect. If there are one or more requests to communicate with the device on the
gueue ahead of this PolIDMSNowCmd, that is acceptable, too. When the CommandQueue
is ready, it executes the PolIDMSNowCmd, which calls the polINowImpl method.

o

j; PolDMSTask | | Chart2DMSFactoryimpl TokenManipulator Chart2DMSimpl CommandQueue
java.util.Timer
run() -
[PoIDMSest—>] o WhLChinG 1. Dol the pOIDAENGACTG St ke ore. %
—create—>| AccessToken

——"give token righl§ to poll'—>

CommandStatus

Return immediately if we have D
had any communications with
pollifNecessary(token, cmdStatus) /4 the device within the poll interval.

S [now - m_IastContacl'i’ime < m_config.m_pollinterval}------=---------1

ohe —create—> PolDMSNowCmd

*addCommand(Poll[ﬁMSNoowd)—>

Each CommandQueue executes
its commands asynchronously.

i~—execute—
<—polINowImp—

™ For details, see sequence diagram
DMSControlModule:pollNowImpl.

Figure 56. DMSControlModule:RunPolIDMSTask (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-82 04/17/01

3.6.2.21 DMSControlModule:SetConfiguration (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl responds to a request to change
the configuration of a DMS. The DMS must be in maintenance mode, the requesting
operator must have proper functional rights, and if there is a (maintenance mode) message
on the sign from another operations center, the user must have override authority. This
method creates a SetDMSConfigCmd (a QueueableCommand) and adds it to the DMS’s
CommandQueue. The CommandQueue is required since some configuration changes
require field communications to the sign, and field communications are relatively slow and
can queue up. Requests to communicate with the sign are processed on a first-come, first-
served basis. When the CommandQueue is ready, it executes the SetDMSConfigCmd,
which calls the setConfigurationlmpl method, also shown on this diagram. When the
setConfigurationimpl method runs, it checks that the DMS is still in maintenance mode (a
previously queued command could have changed it), and that there is no resource conflict
(a previously queued command could have written a message from an operator at another
operations center). Assuming no problems, the CHART2DMSConfiguration is locked
down, and all parameters that need to change are changed. If any of these parameter
changes require communications to the sign (e.g., setting the Comm Loss Timeout in an
FP9500), FMS is requested to make the specified change(s). The method handleOpStatus
handles and responds to any changes to the operational status of the sign (OK, comms
failure, or hardware failure) reported by FMS during this operation. The requesting user is
kept abreast of progress of the request all the while, via a CommandStatus object viewable
by the user.

R1B2 Servers Detailed Design Rev. 0 3-83 04/17/01

m_dmsConfig:
CommandQueue | Char2DMSConfiguration EMS

DMSControlDB

PL ipplier

X

Operator

reate /‘J CommandStatus

setConfiguration, N
(token, config)

[no rights]
[no rights] 'no rights"y
---AccessDenied-

[not in maint mode]
-completed("wrong mode")——>

[not in maint mode]
—-~CHART2Exception—"

Happens if user from
another op ctr has msg
on DMS in maint mode.

checkResourceConflict
(token, cmdStatus)

Writes to CommandStatus
if necessary.

reate /‘ SetDMSConfigCmd

[resource conflict]
[<—ResourceControlConflict

DMSConfigCmd)
—update("command queued")—>

command asynchronously.

CommandQueue executes ‘ﬁ

[not in maint mode]
-completed("wrong mode")——>

[not in maint mode]
CHART2Exception-

3 A Updates CommandStatus
checkResourceConflict (completed() call)
(token, chSnalus) if necessary.

Can happen based on
execution of previously
queued commands.

[resource conflict]
[<-ResourceControlConflict--

update("setting config"y—>
[no change to existing config]

——completed("nothing changes"y—

-[no change to existing config]

7 -[no chng}->

“set data as requested”

end

[chahge to commLossTimeout requested]
onfig(m_config)

If any changes
require comms to
sign,e.g., for
FP9500, derived class
implementation will
do more, such as this. |

handleOpStatus
(result, cmdStatus)

ipdateConfigt

If any changes f——————create "Any" DMSEvent of type DMSCcnfigCha‘nged}*
actually occurex

push (DMSConfigC !

log(token, "DMS <name>, " i ion changed")

——completed("success or failure")—=>

4
Figure 57. DMSControlModule:SetConfiguration (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-84 04/17/01

3.6.2.22 DMSControlModule:SetMessage (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object processes a request to
change its message in maintenance mode. (For setting messages online, see
SetMessageFromQueue.) The DMS must be in maintenance mode, and the requesting
operator must have proper functional rights. This method asks the message to validate itself
one last time (for banned words, and to ensure that the beacons are not set on with an empty
message). Then a SetDMSMessageCmd (a QueueableCommand) is created and added to
the DMS’s CommandQueue. The CommandQueue is required since field communications
to the sign are relatively slow and can queue up. Requests to communicate with the sign are
processed on a first-come, first-served basis. When the CommandQueue is ready, it
executes the SetDMSMessageCmd, which calls the setMessagelmpl method. The
requesting user is kept abreast of progress of the request all the while, via a
CommandStatus object viewable by the user.

o
j< Chart2DMSImpl CommandStatus Message CommandQueue || TokenManipulator OperationsLog
ORB | This method is used in
" | maintenance mode only.
N token Seth eFromQueue is
je(X :
msg, emdStat) used online.
checkAccess(token)
[no rights]
completed("no rights")
[no rights
[no rights] log(token, "unauth. attemp to set DMS <name> to message <text>t")
S AccessDenied
[not in maint mode]

[not in maint mode] completed("wrong mode")

S CHART2Exception -
validateMe jeContent:
[bad words, or beacons on with no msg]
[bad words or beacons] | completed(‘invalid message or beacons"y—>}
[<--DisapprovedMessageContent:-
Updates cmdStat
| if conflict found
p (completed() call). |
."/ AN
checkResourceConflict A
(token, cmdStat)

[resource conflict]

[<--—-ResourceControlConflict-----
create SetDMSMessageCmd
addCohwmand(SetDrv1“ jyeCmd)

update("command quéued")

CommandQueue executes B
command asynchronously.

execute

setMessagelmp——

.| For details, see sequence diagram
~*1 DMSControlModule:setMessagelmpl.

Figure 58. DMSControlModule:SetMessage (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-85 04/17/01

3.6.2.23 DMSControlModule:SetMessageFromQueue (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object processes a request to
change its message while it is online. (For setting messages in maintenance mode, see
setMessage.) This thread is actually initiated in the ArbitrationQueue’s AddEntry method.
The ArbitrationQueue’s evaluateQueue method calls this method. The DMS must still be
online. The operator’s functional rights have already been validated. This method creates a
SetDMSMessageFromQueueCmd (a QueueableCommand) and adds it to the DMS’s
CommandQueue. The CommandQueue is required since field communications to the sign
are relatively slow and can queue up. When the CommandQueue is ready, it executes the
SetDMSMessageFromQueueCmd, which calls the setMessageFromQueuelmpl method.
The requesting user is kept abreast of progress of the request all the while, via a
CommandStatus object viewable by the user.

o

This method used
1 pl - g ol Q
Chart2DMSImpl online only. In maint CommandStatus Message CommandQueue
DMSArbitrationQueuelmpl mode, seth je

e I UsEd.

[—setMessageFromQueue(token, msg, cmdStat, reqID)—=>"" i
[not online]
completed("wrong mode")

[not online]
S— CHART2Exception("wrong mode")-----------------4

valid jeContent

[bad words, or beacons on with no msg]

[bad words, or beacons on with no msg] completed (“invalid msg or beacons"y

Sl CHART2EXxception(“invalid msg or beacons")--------

create—> setDMSMsgFromQueueCmd

addCommahd(SelDMSMngmeueueCmd;

update("command queué d")

CommandQueue executes %

command asynchronously.

execute

<—setMessageFromQueuelmpl—

For details, see sequence diagram D
DMSControlModule:SetMessageFromQueuelmpl.

X delete

Figure 59. DMSControlModule: SetMessageFromQueue (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-86 04/17/01

3.6.2.24 DMSControlModule:SetMessageFromQueuelmpl (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object executes a command to
change its message while it is online. (The analogous method in online mode is
setMessagelmpl.) A request to set the message has already been received and pre-processed
by the setMessageFromQueue method. When the setMessageFromQueuelmpl method runs,
it checks that the DMS is still online (a previously queued command could have changed
it), that the user has rights, and that there is no resource conflict (a previously queued
command could have written a message from an operator at another operations center).
Assuming no problems, FMS is regeuested to change the sign. If it succeeds, the controlling
operations center is updated as necessary, and the database is updated with the new
information. The requesting user is kept abreast of progress of the request all the while, via
a CommandStatus object viewable by the user. A CurrentDMSStatus event is pushed into
the event channel, so that any user (with rights) can immediately see the new content of the
sign. The method handleOpStatus handles and responds to any changes to the operational
status of the sign (OK, comms failure, or hardware failure) reported by FMS during this
operation. The ArbitrationQueue is informed of the result of this operation via the
requestFailed or requestSucceeded method (at which time the ArbitrationQueue may re-
evaluate its own queue and request another change to the sign).

o

m_status:
Chart2DMSImpl CommandStatus Chart2DMSStatus DMSControlDB | | PushEventSupplier

s |

DMSArbitrationQueuelmpl

OperationsLog
Chart2DMSImpl

This method is used onh} when online. In maint

['setMessageFromQueueimpl(token, msg, > mode, setMessage/setMessagelmpl is used.

cmdsStatus, reqiD)

[not online]
—completed("wrong mode")—>{

{not online}

Fupdate("setting message")y—>

_id, agent, community, multiMsg, forever, my addr, beacon)

handleOpStatus
(result, cmdStatus)

.| Updates cmdStatus, updates & pushes
=] new DMSStatus if necesary.

[failure]
—completed(failure"y—>4

[failure]
requestFailed(reqID, false, "comms failure")

setCurrentMessage(msg that was setj———>
7setcomrol\ingOpCemer(dp ctr from tokeny———=>}

selSl‘alus(de, m_status)

——create "Any" DMSEvent of 1y pe CurrentDMSStatus— DMSEvent

push(CurrentDMSStatus:

——completed("success"y—>

log(token, "DMS <name> message set to <text>")

)

Figure 60. DMSControlModule:SetMessageFromQueuelmpl (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-87 04/17/01

3.6.2.25 DMSControlModule:SetMessagelmpl (Sequence Diagram)

SetDMSMessageCmd

Chart2DMSImpl I

CommandStatus

ChartZDMSStatus

m_status

TokenManipulator

PushEventSupplier

DMSControlDB I | EMS I

OperationsLog

(token, multiMsg, beacon,

This method is used in maint mode only. Onl‘lne‘

is used.

i

~[DMS not in maint mode]

esource conflict}

[not in maint mode]
Fcompleted(“wrong mode")—=

Updates cmdStatus
(completed() call)
if conflict found.

checkResourceConflict
(token, cmdStatus)
e '

_id, agent,

[success]

handleOpStatus
(result, cmdStatus)
e

[failure]

—create(multiMsg, beacon)—

, "DMS <name> message setto <text>"y

multiMsg, forever, addr, beacon)

Updates crﬁdSba(us‘ updates &
new DMSStatus if necesary.

sushes %

etCur

getOpCenter(token)

setControllingOpCenter(op ctr)

_status)

create "Any" DMSEvent of type CurrentD|

Figure 61. DMSControlModule:SetMessagelmpl (Sequence Diagram)

push (CurrentDMS!

DMSEvent

R1B2 Servers Detailed Design Rev. 0 3-88 04/17/01

3.6.2.26 DMSControlModule:Shutdown (Sequence Diagram)

This Sequence Diagram shows how the DMSControlModule is terminated. The
DMSControlModule is shut down by the ServiceApplication that started it. When told to
shut down, the DMSControlModule disconnects the DMSFactory from the ORB,
withdraws its offer from the trader, and shuts down the object. When the DMSFactory is
shut down, it withdraws the offers of each DMS and disconnects each DMS from the ORB.
No information needs to be persisted to the database during shutdown, as information is
written to the database as it is updated.

} DMSControlModule java.util. Timer DMSFactorylmpl Chart2DMSImpl POA
ServiceApplication

shutdown

cancel

deactivate_object (DMSFactory)

shutdown

[*for ; deactivate_objec_t(DMS)%
each ;

DMS] !
delete ><
delete ><

ial
delete ><

Figure 62. DMSControlModule:Shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-89 04/17/01

3.6.2.27 DMSControlModule: TakeDMSOffline (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object responds to a request by a
user to go offline. The requesting operator must have proper functional rights, and if there
IS a message on the sign from another operations center, the user must have override
authority. And of course the sign must not offline already, otherwise the request is
redundant. The ArbitrationQueue is interrupted, so that it will stop attempting to modify the
sign (as it does in online mode). A TakeDMSOfflineCmd (a QueueableCommand) is
created and added to the DMS’s CommandQueue. The CommandQueue is required since
field communications to the sign are relatively slow and can queue up. When the
CommandQueue is ready, it executes the TakeDMSOfflineCmd, which calls the
takeOfflinelmpl method, also shown on this diagram. The takeOfflinelmpl method double
checks to make sure it is not already offline (from some other queued command). Assuming
no problems, the method blankSignNow is called to request FMS to actually blank the sign,
update the database, and handle any status change, and push a CurrentDMSStatus event
into the event channel, so that any user (with rights) can immediately see that the sign is
now blank. Regardless of whether blankSignNow works, the method continues on, since
the sign may likely be non-functional when it is taken offline. The DMSStatus is updated to
show that the sign is offline, it is persisted to the database, and it is pushed into the event
channel. The requesting user is kept abreast of progress of the request all the while, via a
CommandStatus object viewable by the user.

R1B2 Servers Detailed Design Rev. 0 3-90 04/17/01

£

or Chart2DMSImpl | | TokenManipulator DMSArbitrationQueuelmpl | | CommandQueue 4Commandstatus| OperationsLog EMS “PushEventSuooller DMSControlDB
[-takeOffline(token, cmdStat)—>
—checkAccess—> o rights]
no rights"y
i [no rights]
[no rights] log(token, "unauth. access attempt"y

AccessDenied

[already offline]
‘already offline" Interrupt the ArbitrationQueue

| immediately so it doesn't try to
put any more messages on the sign
(even though the TakeDMSOffline
. - command might not be execute:
interrupt(token)———————=3} for a while).
[resource conflict]
ResourceConflict

[already offline]
[<-——Chart2Exception(offline)-—1

[resouce conflict]
resource conflict"y

[resource conflict]]
[<—ResourceControlConflict—

normal return)

create- TakeDMSOfflineCmd

1d(TakeDMSOfflineCmd)

-update(queued"y

CommandQueue executes
command asynchronously.

execute
<—takeOfflinelmpt—"—"—

[alreadly offline]
‘already offline"y

--[already offline]

update (“taking offline")

) j
blankSignNow We continue on regardless of whether blankSignNow() works. We don't want
(cmdStat) to stop a sign from going offline because it doesn't work.

m_status.m_opStatus
= OFFLINE

1s(m_status)

log(token, "DMS taken offline"y

ign offline")

Fcreate "Any" DMSEvent of type CurrentDMSStatus

push(CurrentDMSStat

X
Figure 63. DMSControlModule: TakeDMSOffline (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-91 04/17/01

3.7 DMSUtility

3.7.1 Classes

3.7.1.1 DMSUtility (Class Diagram)

This Class Diagram shows classes related to the DMS that are used by both the GUI and the
DMS service. Most of these classes are implementations of value type classes defined in the
system interfaces (IDL).

DMSStatus

A\

Chart2DMSStatus

Identifier m_controlingOpCenteriD
string m_controlingOpCenterName
NetworkC: 'm_NetworkC

factory createChart2DMSStatus() : Chart2DMSStatus

FP9500Status
e octet m_currentMsgNum
octet m_currentisgSource
factory createFP9500Status() : FP9500Status
FP9500Statusimpl
coe

R1B2 Servers Detailed Design Rev. 0

Chart2DMSStatusimpl

DMSRPIData

Chart2DMS m_dms
DMSMessage m_message

getDMS() : Chart2DMS

setMessage(DMS|
factory create DMSRPIData()
DMSRPIData

DMSRPIDatalmpl

DMSConfiguration

Chart2DMSConfiguration

long m_fmsDevicelD
identifier m_owningOrgiD

string m_agentHostName

string m_SNMPCommunityName
long m_pollinterval

long m _poliCycleDuration

string m_devicePhoneNumber
string m_deviceCommString
DevicelodellD m_deviceModellD
long m_deviceDropAddress

long m_deviceResponseTimeout
string m_deviceMaxBaudRate
DMSMessage m_shazamMessage

: Chart2DMSConfigurat

factory createChart2DMSC

Chart2DMSConfigurationimpl

7

FP9500Configuration

DMSPlankemData

DMS m_dms
Identifier m_dmsID
StoredMessage m_storedMessage
Identifier m_storedVsgiD

getDMSID(: Identifier
SetDMS(DMS) : void
getMessagelD Identifier

setMessage (StoredMessage) : void

DMSPlanitemDatalmpl

DictionaryWrapper

~CosTrading.Lookup m_trader
-ORB m_ort

-java.util Vector m_dictionaries
-javalang.Object m_loc
long

m _JastTraderLookupTimestamp

get():DictionaryWrapper
setWrapperSettings(ORB, Cos Trading.Lookup):void
9

getBannedWords(Access Token):WordList

removeBannedWordList(Access Token,WordList):void

addBannedWordList(Access Token,WordList):void

checkForBannedWords(string messageToCheck,
string delimiters,

getApprovedWords(Access Token):WordList

addApprovedWordList(Access Token, WordList):void

removeApprovedWordList(Access Token, WordList):void

P heck(string messageToCheck,
string delimiters,

~DictionaryWrapper():DictionaryWrapper
~getDictionary():Dictionary

DictionaryWordType wordType):WordList

DictionaryWordType wordType):SuggestionList

FP9500Configurationimpl

Message

validateMessageContent(:void;

DMSMessage

octet m_dmsMessageBeacon

MULTISTring m_dmsMessageMultiString

getBeaconState() : octet
getMultiString() : MULTIString
getMinimumCharacters() : long
reateD ILTiString
octet beaconState) : DMSMessage

Figure 64. DMSUtility (Class Diagram)

3-92

04/17/01

3.7.1.1.1 CHART2DMSConfiguration (Class)

The CHART2DMSConfiguration class is an abstract class which extends the
DMSConfiguration class to provide configuration information specific to CHART Il
processing. Such information includes how to contact the sign under CHART 11 software
control, the default SHAZAM message for using the sign as a HAR Notifier, and the
owning organization. Such data extends beyond what would be industry-standard
configuration information for a DMS.

3.7.1.1.2 CHART2DMSConfigurationimpl (Class)

The CHART2DMSConfigurationlmpl class provides an implementation for the abstract
CHART2DMSConfiguration class. It implements get and set methods to access and modify
values of the configuration of a DMS. The configuration information stored here is
normally fairly static: things like the size of the sign in characters and pixels, its name and
location, and how to contact the sign (as opposed to dynamic information like the current
message on the sign, which is stored in an analogous Status object).

3.7.1.1.3 CHART2DMSStatus (Class)

The CHART2DMSStatus class is an abstract class that extends the DMSStatus class to
provide status information specific to CHART Il processing, such as information on the
controlling operations center for the sign. This data extends beyond what would be
industry-standard status information for a DMS.

3.7.1.1.4 CHART2DMSStatusimpl (Class)

The CHART2DMSStatusimpl class provides an implementation for the abstract
CHART2DMSStatus class. It implements get and set methods to access and modify values
of the status of a DMS. The status information stored here is relatively dynamic: things like
the current message on the sign, its beacon state, its current operational mode (online,
offline, maintenance mode), and current operational status (OK, COMM_FAILURE, or
HARDWARE_FAILURE) and controlling operations center. (More static information
about the sign, such as its size and location, is stored in an analogous Configuration object.)

3.7.1.1.5 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic
location of the dictionary and automatic re-discovery should the dictionary reference return
an error. This class also allows for built-in fault tolerence by automatically failing over to a
“working” dictionary without the user of this class being aware that this being done. In
addition, this class defers the discovery of the Dictionary until its first use, thus eliminating
a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently
known good reference to the system dictionary. If the current reference returns a CORBA

R1B2 Servers Detailed Design Rev. 0 3-93 04/17/01

failure in the delegated call, this class automatically switches to another reference. When
there are no good references (as is true the first time the object is used), this class issues a
trader query to (re)discover the published Dictionary objects in the system. During a
method call, the trader will be queried at most one time and under normal circumstances
(other than the first use) the trader will not be queried at all.

3.7.1.1.6 DMSMessage (Class)

The DMSMessage class is an abstract class that describes a message for a DMS. It consists
of two elements: a MULTI-formatted message and beacon state information (whether the
message requires that the beacons be on). The DMSMessage is contained within a
DMSStatus object, used to communicate the current message on a sign, and is stored within
a DMSRPIData object, used to specify the message that should be on a sign when the
response plan item is executed.

3.7.1.1.7 DMSMessagelmpl (Class)

The DMSMessagelmpl class provides an implementation for the abstract DMSMessage
class. It implements get and set methods to access and modify the MULTI-formatted
message and beacon state values which make up a DMS message.

3.7.1.1.8 DMSPlanltemData (Class)

The DMSPIanltemData class is a valuetype that contains data stored in a plan item for a
DMS. It is derived from PlanltemData.

3.7.1.1.9 DMSPlanltemDatalmpl (Class)

The DMSPIanltemDatalmpl class provides an implementation for the abstract
DMSPIlanltemData class. It implements get and set methods to access and modify values relative
to a stored Plan Item for a DMS, which associates a stored message to a specific DMS it should
be placed on.

3.7.1.1.10 DMSRPIData (Class)

The DMSRPIData class is an abstract class that describes a response plan item for a DMS.
It contains the unique identifier of the DMS to contain the DMSMessage, and the
DMSMessage itself.

3.7.1.1.11 DMSRPIDatalmpl (Class)

The DMSRPIDatalmpl class provides an implementation for the abstract DMSRPIData
class. It implements get and set methods to access and modify values relative to a Response
Plan Item for a DMS.

3.7.1.1.12 FP9500Configuration (Class)

The FP9500Configuration class is an abstract class that extends the
CHART2DMSConfiguration class to provide configuration information specific to an

R1B2 Servers Detailed Design Rev. 0 3-94 04/17/01

FP9500 model of DMS. It is exemplary of potentially a whole suite of subclasses specific to
a specific brand and model of sign for manufacturer-specific configuration information.

3.7.1.1.13 FP9500Configurationimpl (Class)

The FP9500Configurationimpl class provides an implementation for the abstract
FP9500Configuration class. It implements get and set methods to access and modify values
specific to the static configuration of an FP9500 DMS. It is exemplary of potentially a
whole suite of subclasses specific to a specific brand and model of sign for manufacturer-
specific configuration information.

3.7.1.1.14 FP9500Status (Class)

The FP9500Status class is an abstract class that extends the CHART2DMSStatus class to
provide status information specific to an FP9500 model of DMS. It is exemplary of
potentially a whole suite of subclasses specific to a specific brand and model of sign for
manufacturer-specific configuration information. In this case, additional information
provided the the FP9500 model would include things like the current message number and
current message source, status bits, light status, pixel failure map, and so on.

3.7.1.1.15 FP9500Statusimpl (Class)

The FP9500Statusimpl class provides an implementation for the abstract FP9500Status
class. It implements get and set methods to access and modify values specific to the
dynamic status configuration of an FP9500 DMS. It is exemplary of potentially a whole
suite of subclasses specific to a specific brand and model of sign for manufacturer-specific
status information.

3.7.1.1.16 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

R1B2 Servers Detailed Design Rev. 0 3-95 04/17/01

3.8 HARControl

3.8.1 Classes

Module

3.8.1.1 HARControlModule (Class Diagram)

This class diagram shows classes that support the use of Highway Advisory Radio (HAR)
devices in the CHART Il system. Details are only shown for classes that exist specifically
for HAR control. Auxillary classes used from other various utility or system interface

packages are shown by name only.

TimerUpdatable

‘ Uniquelyldentifiable

‘ CommEnabled ‘

‘ GeoLocatable

i

f

1
CommandStatusWatcher
monitors msg

SharedResource

L Fevvme/mnucmmn

1
PushventSupplier |

2 CheckControlledResourcesTask

Chart2HARFactoryimpl m_factory

UpdateDateTimeFieldsTask

Chart2HARFactorympl m_factory

SharedResourceManager
JAN

ChartzHARFactory
N

1 14 1,
notifier commands | Chart2HARFactoryimpl
using 2 1
. o) javautil TimerTask H javautilTimer javalang Vector m_harList;
1 oo AR enfer 0
1 1 ChartzHARImpI shutdown(
Chart2HARConfiguration SSheossoucesCheck) void
I: longl] m_currentiessageSiols; e doDateTimeFieldCheck):void
boolean m_updateDateTmeFaled; N K
© 1
HARMsgNotifierWrapper [checkpateTimerields) 1 1, 1,
byte[] m_notiferlD HARControlModule
HARMessageNotiier m_notifer K KK K
HARMgNotrtappe(oye] D)
getD(bytell
i Mamrenancelmde() void “registerTraderTypes(:void
{akeOffine(:voi
o b 1 1
activateHARNotice(AccessToken, Chart2HARStatus V
icEvert
mandStatus) void N N
deacihateHARNOCG AR oaET e, i
i — 1 1 HARControlModuleProperties
~getRefFrom Trader():HARMessageNotler
o 0 il HARSIotManager
1 1
1 1 getharedResMonintSecs long
GelDateTmeFieldRefreshMins(-long
store(t AR essageCl st getHARFactonyID()dentif
Usageindicaior, getAudioClipanagerD():entifier
long sl on gelhaxKum StreamingT hreads(long
1 remove(iong slogoid 1 1
1ol removelmmediateNsg()-void
HARAbitrationQueuelmpl removelmmeds 11 HARControlDB
gelCurrentUsage(yHARSoiDataList
DBC: m_db
evaluateQueue():void 1| HARControlDB(db)
getObjects) HARIMPI 1 1 DB ConnectionManager
QueueableCommand 1C):ChartZHAR Configurat
GetStatus(dentfier)-Chart2HAR Status
nserHAR(Charo AR Conbguraton) void
removeHAR harD):voi getConnection)java so.Comecion
UpdateC: feaseConnection(:
PeBieSiaadenthr: Char ARt vl Shudown()
HARPUtONlineCmd d HART akeOfflineCmd HARSetMsgCmd HARBlankCmd HARStoreSlotMsgCmd
Chari2HAR m har ChanzHaR m har Chari2HAR m har CharoraR m ar; ChartAR m har Chanz+iaR m har
c m_status m_status s m_status m_status m_status
byte] token el oken byte] token D o Toacate el ke
boolcan m_maint boolean m_maintode long m_sloiNumber
boolean m_dateTmeRefresh fong m_reques(iD HARMessage m_msg
bytellm opCenterlD
String m_opCenterName
Message m_msg
long m’requestD
bytef] token
d
HARRefreshDateTimeCmd HARResetCmd HARSetupCmd
eserem Char2HAR m har HARSetTransmitterOnCmd HARSetConfigurationCmd
Chart2HAR m_har Chari2HAR m_har CommandSiatus m_staus HARSe(TransmitterOffCmd
CommandStaius m_status e | status | | CommandStaius m_status o) Chan2HAR m._har rHAR m_har
ommandSiais m_satus : S umbe CommandSiatus m_status .
token el e el token ong m_Soumber CharioHAR m_ar Sommands oSl m_saus
HARMessage m_toBeUpdated I m_status i bytel] toker
byte] token harzHaRConfiguration m_config

Figure 65. HARControlModule (Class Diagram)

R1B2 Servers Detailed Design Rev.

0

3-96

04/17/01

3.8.1.1.1 CHART2HAR (Class)

The CHART2HAR class is an extension of the HAR that is aware of CHART2 business
rules, such as arbitration queues, linking device usage to traffic events, and the concept of a
shared resource.

3.8.1.1.2 CHART2HARConfiguration (Class)

This class contains configuration data for the HAR that is used for CHART Il specific
processing (as opposed to the configuration values contained in HARConfiguration that
relate to typical HAR usage).

3.8.1.1.3 CHART2HARFactory (Class)

This interface defines objects capable of creating CHART2HAR objects. This factory is
also responsible for monitoring the HARs as shared resources and must report when a HAR
that is currently broadcasting a message (other than the default) does not have a user logged
into the system that is from the controlling operations center.

3.8.1.1.4 CHART2HARFactorylmpl (Class)

This class implements the CHART2HARFactory interface as defined by the IDL specified
in the System Interfaces section.

3.8.1.1.5 CHART2HARImpl (Class)

This class implements CHART2HAR as defined by IDL specified in the System Interfaces
section.

3.8.1.1.6 CHART2HARStatus (Class)

This class contains status information for a CHART2HAR object. This information is
specific to CHART Il processing and extends beyond the status related to typical HAR
device control.

3.8.1.1.7 CheckControlledResourcesTask (Class)

This class is a timer task that is executed periodically by a timer. When the run method in
this class is called, it calls the CHART2HARFactorylmpl’s doSharedResourcesCheck()
method, which causes the factory to evaluate each HAR in the factory and determine if all
HARs with a controlling op center have at least one user logged in at the op center.

3.8.1.1.8 CommandQueue (Class)

The CommandQueue class provides a queue for QueuableCommand objects. The
CommandQueue has a thread that it uses to process each QueuableCommand in a first in

R1B2 Servers Detailed Design Rev. 0 3-97 04/17/01

first out order. As each command object is pulled off the queue by the CommandQueue’s
thread, the command object’s execute method is called, at which time the command
performs its intended task.

3.8.1.1.9 CommandStatusWatcher (Class)

This class is a utility that monitors one or more command status objects for completion. It
periodically checks each command status object’s completion code and maintains statistics
on the number of failures and successes. It provides a blocking method that waits for all
command status objects to complete.

3.8.1.1.10 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.8.1.1.11 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART Il system thread requiring database access gets a database
connection from the pool of connections maintained by this manager class. The connections
are maintained in two separate lists namely, inUseL.ist and freeList. The inUseL.ist contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor
thread that is started by the constructor. This connection monitor thread periodically checks
the inuseL.ist to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

3.8.1.1.12 GeolLocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

3.8.1.1.13 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to
broadcast traffic related information over a localized radio transmitter, making the
information available to the traveler.

R1B2 Servers Detailed Design Rev. 0 3-98 04/17/01

3.8.1.1.14 HARArbitrationQueuelmpl (Class)

This class extends the ArbitrationQueuelmpl to provide an implementation of its
evaluateQueue() abstract method. The implementation of evaluateQueue creates a
HARSetMsgCmd command and adds it to an ArbQueueMsg when a message added to the
queue is to be activated on the HAR.

3.8.1.1.15 HARAudioClipManager (Class)

This class provides the implementation of the AudioStreamer interface and is capable of
streaming recorded audio clips that have been previously stored. When requested to stream
an audio clip, this class pulls the audio data from its persistent store pushes the audio data to
the given AudioPushConsumer in a worker thread. This class also allows newly recorded
audio clips to be added to the system. When a clip is added to the system it is assigned a
unique ID and a HARMessageAudioClip is created as a thin wrapper to provide access to
the audio data. When new audio clips are added to the system, the ID of the owner is passed
to facilitate clean-up of the clip when it is no longer needed.

3.8.1.1.16 HARBIlankCmd (Class)

This command object is used to blank the message on the HAR, which involves setting the
message to the HAR’s default message.

3.8.1.1.17 HARControlDB (Class)

This class contains all the database interaction for the HARControlModule. This class
provides the ability to retrieve all HAR information on initialization, update of the
configuration and status information, and insert or remove a HAR device from the system.

3.8.1.1.18 HARControlModule (Class)

This class implements the ServiceApplicationModule interface, providing a platform for
publishing CHART2HAR and CHART2HARFactory objects within a service application.

3.8.1.1.19 HARControlModuleProperties (Class)

This class contains settings from a properties file used to specify parameters to be used by
objects within the HARControlModule for the current instance of the application. These
settings are read during the module initialization. The module must be re-started to apply
any changes made to the properties file.

3.8.1.1.20 HARDeleteSlotMsgCmd (Class)

This class is used to hold data necessary to execute a request to delete a message from a slot
on the HAR device.

R1B2 Servers Detailed Design Rev. 0 3-99 04/17/01

3.8.1.1.21 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that
can be used to notify the traveler to tune in to a radio station to hear a traffic message being
broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device
to better determine if activation of the device is warranted for the message being broadcast
by the HAR. This interface can be implemented by SHAZAMSs and by DMS devices that
are allowed to provide a SHAZAM-like message in the absence of any more useful
messages to display.

3.8.1.1.22 HARMsgNotifierWrapper (Class)

This wrapper class is used to wrap HAR message notifiers associated with a HAR. This
class handles finding the reference of the notifier object given only the object’s ID. The
object discovery is done at the point of first use or if a currently held reference produces a
CORBA failure when used.

3.8.1.1.23 HARPutInMaintModeCmd (Class)

This class contains data needed to execute a request to put a HAR into maintenance mode.

3.8.1.1.24 HARPutOnlineCmd (Class)

This class contains data needed to execute a request to put a HAR online.

3.8.1.1.25 HARRefreshDateTimeCmd (Class)

This class contains data needed to execute a request to update the date/time fields in a
message that is playing on the HAR device.

3.8.1.1.26 HARResetCmd (Class)

This class contains data needed to execute a request to reset a HAR controller.

3.8.1.1.27 HARSetConfigurationCmd (Class)

This class contains data needed to execute a request to change the configuration values of a
HAR.

3.8.1.1.28 HARSetMsgCmd (Class)

This class contains data needed to execute a request to set the message played on a HAR. A
flag is used to indicate if the message was set via a maintenance mode command or via the
arbitration queue.

R1B2 Servers Detailed Design Rev. 0 3-100 04/17/01

3.8.1.1.29 HARSetTransmitterOffCmd (Class)

This class contains data needed to execute a request to turn off the transmitter of a HAR
device.

3.8.1.1.30 HARSetTransmitterOnCmd (Class)

This class contains data needed to execute a request to turn on the transmitter of a HAR
device.

3.8.1.1.31 HARSetupCmd (Class)

This class contains data needed to execute a request to issue the setup command for the
HAR.

3.8.1.1.32 HARSIlotManager (Class)

This class manages the slot usage for the CHART2HARImpl. When a clip is to be stored in
the HAR controller, this class is called instead of calling the ISSAP55HAR directly. This
class ensures the reserved slot numbers (default header, default trailer, default message,
current message) are not overlaid with other clips stored in the controller. When clips are
stored in slots in the controller, this class keeps track of the run-time for each and the total
run time for the device and provides an error when the storage of a clip exceeds the
configured available run time of the device.

This class also helps to manage the condition when multiple slots are needed for the current
(immediate) message. This will be true if the current message consists of 3 or more clips
and a pre-stored clip exists and is preceded and followed by a text or voice clip.

3.8.1.1.33 HARStoreSlotMsgCmd (Class)

This class contains data needed to execute a request to store a message clip into a slot
within the HAR controller.

3.8.1.1.34 HARTakeOfflineCmd (Class)

This class contains data needed to execute a request to take a HAR offline.

3.8.1.1.35 ISSAP55HAR (Class)

This class contains the model specific implementation of HAR features supported by the
Information System Specialists (ISS) AP55 HAR controller. This class stores no data
related to the current state of the device. Instead, this class is used to encapsulate the device
protocol and acts as a utility class to enable an application level class to control the AP55
without communications knowledge.

R1B2 Servers Detailed Design Rev. 0 3-101 04/17/01

This class uses the TelephonyManager to acquire a port when needed. This class must
handle cases when a telephony manager has all ports busy. It could wait for a port to
become available or seek out another telephony manager in the system and attempt to
aquire one of its ports.

3.8.1.1.36 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or
recurring execution.

3.8.1.1.37 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one
or more times.

3.8.1.1.38 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

3.8.1.1.39 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a
CommandQueue for asynchronous execution. Derived classes implement the execute
method to specify the actions taken by the command when it is executed. This interface
must be implemented by any device command in order that it may be queued on a
CommandQueue. The CommandQueue driver calls the execute method to execute a
command in the queue and a call to the interuppted method is made when a
CommandQueue is shut down.

3.8.1.1.40 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

R1B2 Servers Detailed Design Rev. 0 3-102 04/17/01

3.8.1.1.41 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.8.1.1.42 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

3.8.1.1.43 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.8.1.1.44 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.8.1.1.45 UpdateDateTimeFieldsTask (Class)

This class is a timer task that is executed periodically by a timer. When executed, the run
method of this class calls the CHART2HARFactorylmpl’s doDateTimeFieldCheck(),
which in turn calls each HAR in the factory to have it determine if it needs to update any
field messages that use date time fields.

R1B2 Servers Detailed Design Rev. 0 3-103 04/17/01

3.8.2 Sequence Diagrams

3.8.2.1 HARControlModule:activateMessageNotifiers (Sequence Diagram)

This diagram shows the processing involved when the HAR needs to activate one or more
of its message notifiers. Because message notifiers process asynchronously, each message
notifier is told to activate or deactivate and a CommandStatusWatcher is used to track the
progress of the notifiers.

i HARMessageNotifierWrapper

HARImpl

create CommandsStatusWatcher

isSHARNoticeActive:

[* for each See DMSControlModule:activateHARNotice
HARMessageNotifier | [HAR notice is not active] [CommandsStatus sequence diagram for details.
specified for activation] create 7

activateHARNotice

add

| and reports progress through
the command status object.

Message notifier processes
the command asynchronously

waitForCompletior

completed

X

X

Figure 66. HARControlModule:activateMessageNotifiers (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-104 04/17/01

3.8.2.2 HARControlModule:addEntry (Sequence Diagram)

The addEntry method defined in the ArbitrationQueue interface is used to put a message on
a HAR when the HAR is online. The ArbQueueProcessing:addEntry sequence diagram
shows the processing that occurs that is generic in nature, for the arbitration queue base
class implementation is shared and is not HAR specific. Part of the base class processing of
addEntry involves calling the evaulateQueue method. Because this method is abstract, the
derived class provides the implementation of this method. In the case of a HAR, the derived
class is a HARArbitrationQueuelmpl. The details of the HARArbitrationQueuelmpl’s
evaluateQueue processing are shown in the HARControlModule:evaluateQueue sequence

diagram.

X

ResponsePlanltem

HARArbitrationQueue

addEntry

Base class performs

processing which eventually

calls the derived class implementation
of the evaluateQueue method. Base
class provides synchronization prior
to the call to evaluateQueue. Refer to
the ArbQueueProcessing:AddEntry
sequence diagram for details.

evaluateQueue

Refer to HARControlModule:
evaluateQueue for details.

Figure 67. HARControlModule:addEntry (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-105

04/17/01

3.8.2.3 HARControlModule:blank (Sequence Diagram)

A user with proper functional rights can blank a HAR when it is in maintenance mode. This
command is executed asynchronously by placing a HARBIlankCmd on the
CommandQueue. When the command queue executes this command, the blankImpl method
is invoked on the HAR. Refer to the HARControlModule:blankImpl sequence diagram for

details.
} Chart2HARImpl CommandQueue CommandStatus
ORB

blank:

[improper rights]
S [improper rights] completed
AccessDenied

[not in maint mode]

completed
L [not in maint mode] ________;
CHART2EXxception
create HARBIlankCmd
update
addComman
<—execute—
<—blankimpl

Refer to the
HAR ControlModule:blankimpl
sequence diagram for details.

Figure 68. HARControlModule:blank (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-106 04/17/01

3.8.2.4 HARControlModule:blankimpl (Sequence Diagram)

The sequence diagram shows the processing that occurs when a HARBIlankCmd is
executed. This command is placed on the command queue by the HAR blank method when
in maintenance mode or by the arbitration queue’s removeEntry method. A flag in the
command object is used to distinguish the origin of the command to allow for the proper
mode check to be done and to allow for specific processing that is to be done when the
HAR is blanked by the arbitration queue.

The HAR is blanked using the ISSAP55HAR object and having it command the HAR to
play the message in its default message slot. If the default message is successfully set to be
played, if any previous immediate message existed it is removed from the HAR slot(s) it
occupied and any recorded voice data used in the previous immediate message is removed
from the system.

X

CommandQueue

CommandStatus || HARArbitrationQueue | HARAudi 1ager HARSIotManager

PushEventSupplier
HARControlDB DMSControl] ISSAPSSHAR

HARBlankCmd | Chart2HARImpl |

execute—>

[maint cmd AND
—no longer in maint mode]—>
completed

[arb queue cmd AND
——no longer online——}
completed

[arb queue cmd AND no longer online] S
requestFailed

update

deactivateMessageNotifiers

(default message slot (2))

If previous immediate msg
[success AND message existed]
| was using any slots the slots
removelmmediateMsg el Wil b6 derbcte]
[previous msg exists].
deleteClips
[success AND immed msg existed] — =1 This cleans up the stored
[*for each AudioClip in the msg} voice data from recorded
removeAudioDataClip clips that were used in an
message

[success]
updateStatus

[success]

push(HARStatusChanged)

[success AND arb queue cmd]
requestSuccessful

[failure AND arb queue cmd]
requestFailed

Figure 69. HARControlModule:blankimpl (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-107 04/17/01

3.8.2.5 HARControlModule:Shutdown (Sequence Diagram)

When the HARControlModule is shut down by the ServiceApplication, it stops its timer
based processing, disconnects its objects from the ORB, and releases any resources it is
using.

PushEventSupplier PushEventSupplier
POA (HARControl) (Resource

| HARControlModule java.util. Timer Chart2HARFactorylmpl ServiceApplication

>

java.lang.Vector

ServiceApplication

uuuuu

[for each HAR]

disconnectPushConsumer

tPushConst

Figure 70. HARControlModule:Shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-108 04/17/01

3.8.2.6 HARControlModule:createHAR (Seguence Diagram)

A user with the proper functional rights can add a HAR to the system. The HAR object is
created by the HARControlDB object, which takes care of adding the appropriate data to
the database and constructing a CHART2HARImpl object. The factory connects the object
to the ORB, registers it with the ServiceApplication (which causes the object to be
published in the trader), and pushes an event to notify others that a HAR has been added to
the system. The HAR is added in offline mode and therefore no field communications are

necessary.
E Chart2HARFactorylmpl HARControlDB PushEventSupplier POA ServiceApplication
ORB

creattHAR—>

HAR object is created
| [improper rights].______ in OFFLINE mode.
AccessDenied ‘

insertHAR

creat 5| Chart2HARImpl

"add har to list"

activate_object

registerObject

push(HARAdded)

Figure 71. HARControlModule:createHAR (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-109 04/17/01

3.8.2.7 HARControlModule:deactivateMessageNotifiers (Sequence Diagram)

This diagram shows the processing that occurs when the HAR deactivates its associated
message notifiers. Because the message notifiers process their deactivate command
asynchronously, the CHART2HARImpl uses a CommandStatusWatcher to monitor the
command status objects passed to each notifier and determine the status of the operation.

i HARMessageNotifierWrapper

HARImpl

1
Create

CommandStatusWatcher

isHARNoticeActive:

See DMSControlModule:deactivateHARNotice
sequence diagram for details.

[* for each L .
HARMessageNotifier] [HAR ncétlr(ég tlg active] S CommandStatus
deactivateHARNotice
add

Message notifier processes
the command asynchronously

/| and reports progress through

/| the command status object.

waitForCompletiol

completed—=

Figure 72. HARControlModule:deactivateMessageNotifiers (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-110 04/17/01

3.8.2.8 HARControlModule:deleteSlotMessage (Sequence Diagram)

This diagram shows the processing involved when a message that was previously stored in
a slot on the HAR controller is deleted. The command is processed asynchronously via the
command queue. In addition to deleting the message from the slot on the HAR controller,
any voice data that was custom recorded for in the message may be removed from the
system. The voice data is not removed from the system if a message library originally

i PushEventSupplier
Chart2HARImpl CommandQueue CommandStatus | HARControlDB I | HARAudioClipManager DMSControl HARSIotManager ISSAPS5HAR

[improper rights]
[improper rights] _______ completed
AccessDenied

[not in maint mode]
completed

S— [not in maint mode]
CHART2Exception

— HARDeleteSlotMsgCmd
creat

updater

<—execute—;

[no longer in maint mode]

completed

updater

——removeClips—>

[success]
lip instanceof g idioDataCl
i removeAudioDataClip

updateStatus

[success]
push (HARStatusChanged)

Figure 73. HARControlModule:deleteSlotMessage (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-111 04/17/01

3.8.2.9 HARControlModule:evaluateQueue (Sequence Diagram)

This diagram shows the processing done by the HARArbitrationQueuelmpl’s
implementation of the ArbitrationQueuelmpl’s evaluateQueue abstract method. The base
class implementation performs housekeeping prior to calling evaluateQueue, so the
evaluate queue only needs to evaluate the messages on the message queue and determine
the message (or messages) to put on the device or determine if the device should be
blanked. In this implementation, at most one message is on the arbitration queue for
activation. When told to evaluate the queue, the HARArbitrationQueue looks at the top
entry on the queue to decide the processing that must occur. If the entry is not already
active or is marked for update and it is not marked for deletion, the message contained in
the entry will be set on the HAR. If the entry is marked for deletion and is active, the HAR
is blanked. Refer to the HARControlModule:setMessagelmpl and
HARControlModule:blankImpl sequence diagrams for details on the processing that occurs
when the arbitration queue executes the command.

These two are
actually the same
object. They are shown
separately to indicate
that the base class calls
the derived class implementation
because the base class impl is
abstract.

| HARArbitrationQueue

| m_msgQueue | ArbQueueEntry Chart2HARImpl | CommandQueue | HARAudioClipManager

ArbitrationQuéuelmpl

Base class provides L\
-{ synchronization prior
o calling evaluateQueue.

If the queued
message contains
recorded voice,

itis persisted and
a thin wrapper that
can provide access
| to the recorded voice
~"| is created.

[tactive or update and !deleted]
DataCli

storeAudioDataClip

ioClip

rereate™ arsetvsgcmd

[active or updated and !deleted]
setMsgFromArbQueue

[active o updated and !deleted
m_inProgress = true

[entry marked as deleted]
blankFromArbQueue

””””” HARBlankCmd

| The command queue
Refer to setMessagelmpl executes commands
and blankimpl —execute—~
sequence diagrams for e

details on processing that
occurs when the md
and HARBIlankCmd are executed.

Figure 74. HARControlModule:evaluateQueue (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-112 04/17/01

3.8.2.10 HARControlModule:getConfiguration (Sequence Diagram)

A user with appropriate priveleges can get the current configuration of the HAR. This
involves returning the current configuration object from the HAR object.

Figure 75. HARControlModule:getConfiguration (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

Chart2HARImpl
getConfiguration——=>
P [improper rights] _______:
AccessDenied
P [success]
Chart2HAR Configuration

3-113

04/17/01

3.8.2.11 HARControlModule:getStatus (Sequence Diagram)

When a request is made for the current status of the HAR, the HAR’s status object is

returned.
@
Chart2HARImpl
ORB
getStatus— > The status object is kept Il

| up to date during operations
that change the status of

the HAR. All that needs to be
done when status is requested

- ——-Chart?HAR Status: T is to return the current
ChartzHARStatus Chart2HARStatus object.

Figure 76. HARControlModule:getStatus (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-114 04/17/01

3.8.2.12 HARControlModule:Initialize (Sequence Diagram)

This sequence diagram shows the processing that takes place when the HARControlModule
is initialized. The module creates the support objects that will be needed by the HAR
factory and the HAR objects. The HAR Factory is created which in turn creates the HARs
that have been previously added to the factory. The factory and the HAR objects are added
to a recurring timer so that they can conduct their timer based processing when appropriate.
The factory performs shared resource management checks periodically and the HARs may
need to periodically update their message based on the time of day, depending on the
message content.

Service HARC
Application POA
registerTraderTypes
[getD P -
JH RC erties - /
reater > L
rester [pstevensuppter
j S—
{—getDBConnectionManager—>{
HARCOntroIDB
g S—
7| HarFactoryimp!
getHARObjects——
Chart2HARImp]
A 1
[*for each HAR in DB]
oA seapssiaRr
s
AbitrationQueueDB
[for Em‘:h HAR]
tivate_object
registerObject(HARFactorylmplf]
L HARAudioCliphanager
creat
L HARAUGIOCIpDB|
creat
’I java.util. Timer
S
’I CheckControlledResourcesTask
>|| UpdateDateTimeFieldsTask

Figure 77. HARControlModule:Initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-115 04/17/01

3.8.2.13 HARControlModule:PutinMaintenanceMode (Sequence Diagram)

A user with appropriate priveleges can put a HAR in maintenance mode. When this occurs,
the HAR is blanked and its transmitter is turned off. If there is a failure commanding the
device, the status of the HAR is still marked as blank in CHART Il and the device is moved
to the maintenance mode state.

% Chart2HARImpl CommandQueue CommandsStatus || ISSAPSSHAR PushEventSupplier | HARControlDB | | SHAZAM |
ORB i
putinMaintenanceMode- Fq itrationOUeLelmbl
l [improper rights]..____ [improper rights] p
AccessDenied
[already in mail mode] cc
L [alreadyoffine]
CHART2Exception
errupt
create—>] LARPutinMaintModeCmd
update
-addCol
Command Queue
<—execute—— | executes commands
asynchronously.
———————{already offline] cc
o
eale /‘ CommandStatusWatcher
[Create™ commandstatus
[*for each
geNotifierWrapper, .
thatisSHAZAMO] | 1 | 1 putnMantenanceMode
add
tart
[finished processing]
>< completed
aitForCompletion: ><
"default ")
HAR status is etTransmitterOff
setto
blank even if
the attempt
to blank the
device fails. updateHARStatt
push(HARStatusChanged)

Figure 78. HARControlModule:PutinMaintenanceMode (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-116 04/17/01

3.8.2.14 HARControlModule:PutOnline (Sequence Diagram)

A user with appropriate priveleges can put a HAR online. When this occurs, the HAR is

blanked and the transmitter is set on. If a failure occurs while commanding the device, the
device is not brought online.

E | Chart2HARImp| | | TokenManipulator | | CommandStatus

ORB

PushEventSupplier
CommandQueue ISSAPS5HAR HARControlDB

(HAR Control)
putOnline———————>} | IARArbitrationQueuelmpl |

checkAcce:

(impraper rights] [improper rights] completec
AccessDenied i
[readyonine] | falready online] completed
CHART2Exception
create— HARPutOnlineCmd
adaCor ‘IlHnI 3a

| Command Queue
/| processes commands
/| asynchronously.

ecute

pulOnIinelmpli

[alréady online]
completed

updale(”HAﬁ Xyz: putting online"y

] We setup the HAR when it E

is brought online because

‘ we don't know what state
setupimpl itis in. It will have likely been
powered off and lost all memory.

Refer to setup sequence diagram

for details.

[failure]
completed

[success]
resume

[success]
updateHARStatus

push (HARStatus Changed)

deactivateMessageNotifiers

Figure 79. HARControlModule:PutOnline (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-117 04/17/01

3.8.2.15 HARControlModule:removeEntry (Sequence Diagram)

Remove entry is called when a message placed on an arbitration queue is no longer needed
by the originating traffic event. The base class performs queue housekeeping and then calls
the derived class’s implemenation of evaluateQueue. Refer to the
ArbQueueProcessing:removeEntry sequence diagram for details. The processing performed
by the HARArbitrationQueuelmpl’s evaluateQueue method is shown in
HARControlModule:evaulateQueue.

E HARArbitrationQueue

ResponsePlanitem

removeEntry—>

"] the derived class evaluate

evaluateQueue

Figure 80. HARControlModule:removeEntry (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-118

Base class performs Il
processing which marks the

proper entry for deletion in
m_msgQueue. And calls

queue method if a command

is not already in progress.

If a command is already in progress,
the arb queue will take care of the entry
marked for deletion when the previous
command completes. Refer to the
ArbQueueProcessing:removeEntry
sequence diagram for details.

Refer to the HARControlModule:evaluateQueue
sequence diagram for details.

.

04/17/01

3.8.2.16 HARControlModule:removeHAR (Sequence Diagram)

A user with proper functional rights can remove a HAR from the system if the HAR is
offline. The HAR delegates its removal to the HAR factory that created it. The HAR is
withdrawn from the trader and disconnected from the ORB. The HARControlDB object is
called to remove the HAR from the database, and the HAR is removed from the HAR
factory’s list of HARs. After the HAR has been removed from the HAR list, no references
to the HAR exist in the HARControlModule and the CHART2HARImpl object is deleted.

% Chart2HARImpl Chart2HARFactorylimpl CosTrading.Register POA HARControlDB
ORB

remove—>

— [improper rights] _________i
AccessDenied
[not offline]
CHART2Exception
———removeHAR——>}

withdraw

deactivate_object

deleteHAR

"remove from list"

X

Figure 81. HARControlModule:removeHAR (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-119 04/17/01

3.8.2.17 HARControlModule:reset (Sequence Diagram)

A user with the proper functional rights can reset the HAR controller when the HAR is in
maintenance mode. A reset command is issued to the HAR controller that erases all stored
data in the HAR. The setuplmpl method is then called to restore the data that resides on the

HAR. Refer to the setup sequence diagram for details on the setupImpl call.

£

Chart2HARImpl

reset

[improper rights]
AccessDenied

[not in maint mode]
CHART2Exception

CommandQueue

PushEventSupplier
(DMSControl)

CommandStatus

ISSAPS5HAR

[improper rights] N
completed |

[not in maint mode] 5

completed

—create—>| HARRe

setCmd

update

addCommand———>}

Figure 82. HARControlModule:reset (Sequence Diagram)

<—resetimpl——

[no longer in maint mode] S

completed

<—execute—

update

reset:

[failure]

setuTImpI

completed

Refer to the setup sequence
diagram for details on the call

to setupimpl. This call performs
the setup of the HAR controller,
pushes an event, persists the

state of the HAR, and marks

the command status as completed.

R1B2 Servers Detailed Design Rev. 0

3-120

04/17/01

3.8.2.18 HARControlModule:setConfiguration (Sequence Diagram)

A user with the appropriate priveleges can set the configuration of the HAR. The HAR
must be in maintenance mode when setting the configuration. The command is processed
asynchronously by the command queue. Because the configuration consists of many
separate values that are set individually on the device, the possiblity of partial success
exists. When this occurs warning messages are given back to the user through the command
status object and the configuration is set to reflect the partial success.

Chart2HAR Configuration
instance stored in
S Char2HARImpl CommandQueue Commandstatus ChartzHARImpl) issAPssHAR || Hare DB DictionaryWrapper
[improper rights;

completed
Lo fimproper rights]______ |
AccessDenied |

notin mode]
L __tnotin maintenance mode] __ completed
CHART2Exception

[*for each message clip in TextClip)

[Message clip instanceof -

propose
default header, trailer, and checkForBannedWords
default message]

L [banned words exist]____
DisapprovedMessageConitent

" HARSetConfigurationCmd

update-

_~| Command queue executes E
| com

mands asynchronously

[no longer in maint mode]
completed |

update
—set name, location, phone numbers, max voice seconds, and message notifier list—>

[inter message spacing changed]
setConfiguration

[success]
el inter-message spacing

o

[failure]
set flag and append
warning 1o status msg

.| Refer to SetDefaultHeader
sequence diagram for details;

setDefaultHeader

[failure]
set flag and append
warning 1o status msg

-—+-1 Refer to SetDefaultHeader

- sequence diagram for sample
of logic to be used. The default
setbefaTrailer trailer is stored in slot 3.

[failure]
set flag and append
warning o status msg

| .rt| Refer to setDefaultMessagel
etDefaulivios sequence diagram for details
i i

[some or all

of the 1 changes
updateHAR Configuration

[some or all of the changes

push (HARConfigurationChanged)

“format status message based on
full success or partial success

with warning messages” |

completed

Figure 83. HARControlModule:setConfiguration (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-121 04/17/01

3.8.2.19 HARControlModule:SetDefaultHeader (Sequence Diagram)

This sequence diagram shows processing that occurs when a message clip is received by the
CHART2HARImpl to be stored as the default header for the HAR. This is a sub-process of

setting the configuration of the HAR. The logic for this operation also applies to setting the

default trailer for a HAR.

The message clip is processed differently based on the type of message clip it is. If the
message clip is a text message clip and the clip is different than the current default header
for the HAR, the ISSAP55HAR obiject is called to store the text message (converted to
speech) in slot 1 of the HAR. If the storage into the HAR is successful, the message clip is
stored in the current HAR configuration as the default message header.

If the message clip is an audio data message clip (custom recorded by the operator) the
voice data is persisted and a thin wrapper is created to represent the clip. This thin wrapper
does not carry the voice data (which could be very large) but instead carries a reference to
an object (streamer) that can supply the data when it is needed.

If the message clip passed is a pre-stored clip (used to indicate a slot in the HAR that has
been previously downloaded with a message), the processing of the default header produces
an error. Note that the GUI prevents the user from using a prestored clip for the default
header because the default header is itself stored in a slot on the HAR, thus this check exists
as an extra precaution.

% Chart2HARImpI HARMessage

| | | ISSAPSSHAR
HARImpI

e |

HARControlDB |

MessageClip

tanceo
FiARIVESs agePrestoredCip]
CHART2Exception

\\\\\\\\
ssageAudioDataCip]
oreAudioDataClip

3
&5
£223

lip:

[MessageClip instanceof HARMessageAudioClip AND ID != existing hdr ID]
store

—storeClips(slot 1—>}
<—success o failure—

[MessageCiip instanceof HARMessageTex(Clip AND new b 1= existing x|
store —storeClips(slot 1)—=
&—success or falure——

[failure AND
b MessageClipins tanceof DataC
removeAudioDataClip

[succe: ss AND
prev default hdr instanceof HARMessageAudioDataClipl—————>1
removeAudioDataClip

[success]
"set default header”

i—updateConfiguration—>;

Figure 84. HARControlModule:SetDefaultHeader (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-122 04/17/01

3.8.2.20 HARControlModule:setDefaultMessage (Sequence Diagram)

This sequence diagram shows processing that occurs when a message is received by the
CHART2HARImplI to be stored as the default message for the HAR. This is a sub-process
of setting the configuration of the HAR. The logic for this operation also applies to setting
the default trailer for a HAR.

Each clip in the header, body, and trailer of the message are processed to persist any
recorded voice prior to downloading the message to the HAR. The message is then sent to
the HAR via the ISSAP55 object and the HAR’s configuration is updated with the new
default message. Note that when storing the HAR message in the controller, if use of
default header and / or trailer is specified in the message they will not be downloaded to the
controller but instead default header and/or trailer slots will be specified when the default
message is to be played.

Chart2HARImpl HARMessage IHAR udioCl | IHARSIDtManaqer

setDefaultMessage———>

| ISSAPSSHAR " HARC .I |D|ct|onarw»/ranner

Chart2HARImpl

[MessageClip instanceof
[<-—HARMessagePrestoredClip]——
CHART2Exception

[MessageClip instanceof HARMessageAudioDataClip]. >

[*for each of header, storeAudioDataClip
body, and trailer in Y 1~ i dioClip
HARMessage] Y All clips (header, body,
4‘—[and trailer) are passed
1 If the message contains and stored in a single
selll;eacljer or A clips with recorded voice, slot.
set B" aéer or. they are persisted and replace 7
sa?)pn?pr{a?es with & thin wrapper.
tore
—storeClips (slot 2)—>
[success]
[*for each HAR \udioClip removeAudioDataClip

in the previous default message]
[N

rrrrrrr
set default message

[failure]
[*for each HARMes sageAudioClip removeAudioDataClip

in the proposed default message]

Figure 85. HARControlModule:setDefaultMessage (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-123 04/17/01

3.8.2.21 HARControlModule:setMessage (Sequence Diagram)

A user with proper functional rights can set a message on a HAR when it is in maintenance
mode. A command object that knows how to set a message on a HAR is created and passed
to the CommandQueue to be processed asynchronously. The processing done when the
command is executed from the command queue is shared among the set message in
maintenance mode and the setting of a message through a traffic event and is therefore
shown on a separate diagram, HARControlModule:setMessagelmpl.

% Chart2HARImpl CommandQueue CommandStatus DictionaryWrapper
ORB
setMessage:
[improper rights]%
77777777777 [improper rights] _______i completed |
AccessDenied :
[not in maint mode]%
completed
Lo [not in maint mode] ______
CHART2Exception
[*for each of Header, [HARMessageClip instanceof HARMessageTextClip] 5
Body, and checkForBannedWords

Trailer in message]

[banned words e>}<ist] S
completed

rcreate™ pARSetMsgCmd

update:

addCommand———>

<—execute—;

<-setMessagelmph;

Refer to the HARControlModule:setMessagelmpl
sequence diagram for details.

Figure 86. HARControlModule:setMessage (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-124 04/17/01

3.8.2.22 HARControlModule:setMessagelmpl (Sequence Diagram)

This sequence diagram shows the processing that occurs when a HARSetMsgCmd is
executed from the command queue. This command can be placed on the queue as a
maintenance command or as part of online processing, therefore some of the processing
differs based on origination of the message. Refer to the notes on the diagram for details.

When setting the message on the HAR, any recorded voice clips that exist in the message
are passed to the HARAudioClipManager for storage and they are converted from the
heavy weight HARMessageAudioDataClip objects (which contain the actual voice data) to
lightweight HARMessageAudioClip objects, which contain a streamer that can provide the
data when needed. These lightweight objects are used to pass voice clips throughout the
system to avoid the bandwidth needed to pass the actual voice data. The actual voice data is
only passed (via the streamer) when the actual voice data is needed for listening (by the end
user) or for playing to the device (by FMS). Messages that are set when the device is online
through the arbitration queue’s addEntry method will store off any voice data in the
HARAudioClipManager prior to the setMessagelmpl getting invoked, so the processing
done on the HARAudioClipManager shown on the diagram will only ever apply to
messages set in maintenance mode.

Following any processing of voice data clips, the message is passed to the
HARSIotManager to download the clips to the appropriate slot on the HAR device using
the ISSAP55HAR object. The HARSIotManager keeps track of all slots in use on the HAR
controller, including the clips that occupy the slot and how the slot is being used
(Immediate message, default message, etc.) The ISSAP55HAR object is used to carry out
the communications to store one or more clips in a slot on the HAR device, including
piecing together clips when multiple clips are to be stored in a single slot.

After the HARSIlotManager has the clips stored into the HAR controller, a call is made to
the ISSAPP55HAR object to have it command the HAR device to play the slot (or slots)
that contain the immediate message.

R1B2 Servers Detailed Design Rev. 0 3-125 04/17/01

o
HARSetMsgCmd Chart2HARImp|
CommandQueue

-execute:

[maint mode set message AND
no longer in maint mode]
completed
[arb queue set message AND
no longer online]
completed

L__[arb queue set message AND no longer online]__,

| HARAudioClipManager

PushEventSupplier
DMSControl,

| HARSIlotManage

| ISSAPSSHAR |

Stop the current message
prior to download of new

message because we will
overlay into the same slot

ing.

thatis pla

requestFailed

update:

[If not blank].

Any slots that were
used by previous
message but not used
by this message are

deleted.

b aueue set message aND farel s, Set message commands

failure] originating from the arbitration

ailure] queue add message will have
completed p already stored any AudioDataClips
[success] in the HARAudioClipManager, thus

[*for each | g ioDataClip in message} AudioDataClips will exist at this
StoreAudioDataCip point only for maintenance mode
set message.
[success]
storelmmediateMsg

diagram

Headers can contain a date-time field
1o be replaced with "morning, afternoon,
or evening” based on the time of day. When
the default header is specified for use and it
contains a date/time field, the default
header is sent to the controller with the
date/time field updated for the current |
time. Note - after this initial setting of the
message, message headers that contain
a date/time field and are active will be |
updated 3 times a day by re-loading the clip
1o the controller. See the updateHARN

for detail

VessageDateTime

[slots were used by
previous immediate
——msg that will not—>
be used by new msg]
deleteClips

default header specified

and it has a
Gate-time field] |

Note - Immediate
message could tal

more than once.

multiple slots denend\ng
on the types of clips
it contains, therefore
this call could be made

storeClips

Flags are used to track
the sub-commands that
have succeeded so the
status can be formatted
properly prior to completion.

[failure]

[*for each audio data clip in proposed msg not in slotF———=—>}

removeAudioDataClip

[success]

[arb queue set message AND success] >

requestSuccessful H

uccess]

If any of the commands
are successful while
others failed, we still
need to update the

[arb queue set message AND failre] S

[*for each audio data clip in previous me
removeAudioDataClip
requestFailed
any success]

age]

status and push the
status changed event

UpdateHARStatus

fany success

and removal, thus

to reflect the current
status. For example

if we downloaded clips
but failed when we tried

to play them, the slot
configuration has
changed.

activateMessageNotifiers

push (HARStatus Changed)

Set message comm
maintenenance mode will not
have any message

ands from

otfiers specified

for activation.

are removed here.

When the

Note: HARAudioClipManager N
chooses whether or not to
remove the clip based on the
owner ID passed during addition

was a stored message the clips
are not removed from the system
| because the library owns the

clips, not the HAR. For this re\eaSe
the arbitration queue uses the HAR'S
ID for the owner ID and thus audio
data clips stored from the arb queue

arbitration queue is |mplemenled to
hold multiple messages, it will use
its own ID for audio data clip storage
and the clips will not be removed
unti the message is removed from
the arbitration queue.

if the message

Figure 87. HARControlModule:setMessagelmpl (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-126

04/17/01

3.8.2.23 HARControlModule:setTransmitterOff (Sequence Diagram)

A user with proper functional rights can set the HAR transmitter off when the HAR is in
maintenance mode. This call is executed asynchronously with the communications being
delegated to the ISSAP55HAR class.

o
PushEventSupplier
Chart2HARImpl CommandQueue CommandStatus HARControlModuleDB DMSControl ISSAPS5HAR
ORB

setTransmitterOff—>
L [improper rights]
| _limproperrights] completed
AccessDenied

[not in maint mode]
completed

create > HARSetTransmitterOffcmd

update

| _____[notin maint mode]______
CHART2Exception

addCommand

execute—;

setTransmitterOffimpt——

[no longer in maint mode]
completed

update

etTransmitterOff:

[success]
updateHARStatus

i [success]
push (HARStatusChanged)

completed

Figure 88. HARControlModule:setTransmitterOff (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-127 04/17/01

3.8.2.24 HARControlModule:setTransmitterOn (Sequence Diagram)

A user with proper functional rights can set the HAR transmitter on when the HAR is in
maintenance mode. This call is executed asynchronously with the communications being
delegated to the ISSAP55HAR class.

o
PushEventSupplier
Chart2HARImpl CommandQueue CommandStatus HARControlModuleDB DMSControl ISSAPS5HAR
ORB

setTransmitterOmn
i [improper rights]
| _limproperrights] completed
AccessDenied

[not in maint mode]
completed

create > HARSetTransmitterOnCmd

update

| _____[notin maint mode]______
CHART2Exception

addCommand

<—execute—}

setTransmitterOnimpt——

[no longer in maint mode]
completed

update

etTransmitterOn

[success]
updateHARStatus

i [success]
push (HARStatusChanged)

completed

Figure 89. HARControlModule:setTransmitterOn (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-128 04/17/01

3.8.2.25 HARControlModule:setup (Sequence Diagram)

The setup command involves re-sending the current setup (as known in CHART 1I) to the
HAR device. This includes setting the configurable parameters on the HAR, downloading
all messages that are to be stored in slots on the HAR, setting the HAR to its default
message, and turning the transmitter on. Because this involves many steps, it is possible
that only partial success is achieved. In this case, flags are used to keep track of which parts
failed and an appropriate status message is relayed to the end-user via the command status

o)
PushEventSupplier
Chart2HARImpl Ci Queue CommandStatus HARControlDB DMSControl, HARSIotManager ISSAPSSHAR
ORB
etup

[improper rights]

,,,,,,,,,,, [improper rights]_________ completed |

AccessDenied i
[not in maint mode]

completed
— [not in maint mode]________
CHART2Exception
[oreale > paRsewpcmd
update
i<—execute

[no longer in maint mode]

completed Sets the inter message spacing
and static setup values.

update:

e

Partial success is
possible with this
command. If a failure
occurs, a flag is set
that is used to format
the status message
pushed in the
completed call.

Any failure causes
the completion code
to be "unsuccessful"

storeClips
[* for each clip
in status slotData
list]

it ge slot(s))

[any part was successful]
updateStatus

[any part was successful]
push (HARStatusChanged)

Figure 90. HARControlModule:setup (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-129 04/17/01

3.8.2.26 HARControlModule:storeSlotMessage (Sequence Diagram)

A user with proper functional rights can store a message in a slot in the HAR controller for

later activation. This command is processed asynchronously via the command queue. When
executed, the HARAudioClipManager object is used to download the message to the HAR

and track the slot usage.

PushEventSupplier
?[Chart2HARImp CommandQueue | | CommandStatus | HARControlDB | |HARAud\uC\igManager (DMSControl) HARSlotManager | | DictionaryWrapper | ISSAPSSHAR
ORB
[improper rights]
— [improper rights] _____ completed
AccessDenied
[not in maint mode]
completed

I [not in maint model______
CHART2EXxception

lip instanceof + geTextClip]
checkForBannedWords

[banned words exist]

completed

_[banned words exist]_____
DisapprovedMessageContent;

create>l paRStoreSlotMsaCmd

update:

[no longer in maint mode]

completed
update
[MessageClip instanceof g DataClip]
storeAudioDataClip
ip:
[failure]
lip instanceof g DataCl
DataClip
updateStatus

[success]
push (HARStatusChanged)

Figure 91. HARControlModule:storeSlotMessage (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-130 04/17/01

3.8.2.27 HARControlModule: TakeOffline (Sequence Diagram)

A user with appropriate priveleges can take a HAR offline. This causes the HAR to be
blanked and its transmitter to be set off. If the HAR cannot be blanked, it is still marked as
blank within the CHART Il system and the device moves to the offline state.

Chart2HARImpl CommandQueue Commandstaus | | 1ssapsstar | [BushEventSupoiier HARControlDB SHAZAM
HARControl
ORB
-
takeOffin HARArbitrationQueuelmpl
l..._limproperrights] ____ fimproper rights]
AccessDenied
[already offline]
... [aready offiine] .
CHART2Exception
Tupt
create ?| HaRTakeoffineCma
update
Arbitration Queue
execute—— | executes commands
asynchronously.
<—takeOfflineimpF—"—
[already offline]
creale CommandsStatusWatcher
[create™ commandstatus
[*for each
Wrapper.
that iSSHAZAM()] takeOfflin
-add
tart
[finished
>< completed
waitFol ><
'default message"y
HAR status is etT
setto
blank even if
the attempt ~ f-eeeef
to blank the
device fails. updateHARStatu
push(HARStatusChanged)

Figure 92. HARControlModule: TakeOffline (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-131 04/17/01

3.8.2.28 HARControlModule:UpdateHARMessageDateTime (Sequence Diagram)

HAR Text messages can contain a tag that is to be substituted with the text “morning”,
“afternoon”, or “evening” in place of the tag based on the time of day the message is set.
This substitution will be done at the time the HAR message is set and will also be done to
any messages that are active at 00:00, 12:00, and 17:00. This sequence diagram shows the
processing involved in the automated substitution and message setting. This automated
process involves telling each HAR object to update its message if it deems it is necessary. If
necessary, the HAR puts a command on its command queue and the command is executed
asynchronously. Because the command queue may have had a command in progress that
changes the HAR’s message, it is necessary to check if the date/time update needs to be
done when the command is executed. If so, the appropriate clip (or clips) are re-
downloaded to the HAR and the appropriate spoken word will replace the date/time field
during the download process, which involves text to speech conversion.

% | UpdateDateTimeFieldsTask | | cl impl | | ct pl | CommandQueue | HAR | PushEventSupplier
java.util. Timer
HARControlDB
Tu—
- I\ | doDateTimeFiekiCheck—>
This task is scheduled
to run at 12:00, 17:00,
and 00:00.
——checkDateTimeFields—>
i<~——{device not online}-———
ic..[currentmsg has no____
date time fields]
[* for each HARImpl]
L_create—>| HARRefreshDateTimeCmd
CommandQueue execttes L
the command asynchronously.
exectte
<—refreshDateTimelmpl—; If there was a command on the B
i1 queue that changed the message
o after we were queued, we don't
need to perform the update because
[Message to be even if the new message has date
""" updated not equal > time fields, they will have been put
‘Current message] on the device with the proper word
embedded | Clipthat contains the
L1 date time field is |
g re-sent to the HAR
& If the clip is stored in
a slot with other clips,
all clips will have t
re-sent.
[failure]
push(HARStatusChanged)
{_[failure]
updateStafus

Figure 93. HARControlModule:UpdateHARMessageDateTime (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-132 04/17/01

3.9 HARULility

3.9.1 Classes

3.9.1.1 HARUtility (Class Diagram)

This class diagram shows classes related to the HAR that are used by both the GUI and the
server. Most (if not all) of these classes are implementations of value type classes defined in
the system interfaces (IDL).

‘ Chav\?HARS\a\us‘ ‘ Chart2HARConfiguration ‘ ‘ HARRPIData ‘ ‘ HARP\annemDa\a‘
javalang Runnable
javalang.ThreadGroup
run()
Zr Chart2HARStatusimpl ChartzHARConfigurationimp! HARRPIDatalmpl HARPlanitemDatalmpl
AudioPushThreadManager
pinfo 1
java.util.LinkedList A 1 [validates
2] message
content
sin
getFirst(yObject I =
add(Object)
1 HARAudioClipManager
HARAudioClipDB
byte]] m_id
DB m_db
1 1 | HARAudioClipManager(bytel
getl der 13

ator
S ell o opaacin AR AdaCipNenager
et long storeAudioDataClip(HARMes lip,
StoreAudioDal bytel] owner D)-HARMess ageAudioCi HARMessageClip
removeAudioDataCip(byte] cipD, bytel owner

idioDataClip clip)
getAudioData(bytel] clipD). HARMessageAud\)uDaxaChp ‘ ‘ ‘
rer D)

moveAudioClip(bytel] clipiD, byte[] ownerl

1
‘ HARMessageAudioDataClip ‘ ‘ lip ‘ ‘ lip ‘ ‘ lip ‘
1
DB ConnectionManager
HARMessageAudioDataClipimpl lipimpl TextClipimpl Jipimp!

getConnection()java.sl.Connection
releaseConnection();
shutdown();

Figure 94. HARUtility (Class Diagram)

3.9.1.1.1 AudioClipStreamer (Class)

This interface is implemented by objects that can push a previously stored audio clip given
its ID. The audio data is pushed via the AudioPushConsumer supplied by the user of this
interface

3.9.1.1.2 AudioPushConsumer (Class)

This interface is implemented by objects that are capable of receiving audio data using the
push model, where the server pushes the data to the consumer. One call to
pushAudioProperties() will always precede any calls to pushAudio().

3.9.1.1.3 AudioPushThread (Class)

This class is a thread that is used to push audio clip information to an AudioPushConsumer.

R1B2 Servers Detailed Design Rev. 0 3-133 04/17/01

3.9.1.1.4 AudioPushThreadManager (Class)

This class maintains a pool of reusable AudioPushThread objects, which can be used to
push audio clip information back to the client. It provides the functionality to manage
access to the AudioPushThreads.

3.9.1.1.5 CHART2HARConfiguration (Class)

This class contains configuration data for the HAR that is used for CHART Il specific
processing (as opposed to the configuration values contained in HARConfiguration that
relate to typical HAR usage).

3.9.1.1.6 CHART2HARConfigurationimpl (Class)

This class is a concrete implementation of the CHART2HARConfiguration abstract class
generated from IDL.

3.9.1.1.7 CHART2HARStatus (Class)

This class contains status information for a CHART2HAR object. This information is
specific to CHART Il processing and extends beyond the status related to typical HAR
device control.

3.9.1.1.8 CHART2HARStatusIimpl (Class)

This class is a concrete implementation of the CHART2HARStatus abstract class generated
from IDL.

3.9.1.1.9 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART Il system thread requiring database access gets a database
connection from the pool of connections maintained by this manager class. The connections
are maintained in two separate lists namely, inUseL.ist and freeList. The inUseL.ist contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor
thread that is started by the constructor. This connection monitor thread periodically checks
the inuseL.ist to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

R1B2 Servers Detailed Design Rev. 0 3-134 04/17/01

3.9.1.1.10 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic
location of the dictionary and automatic re-discovery should the dictionary reference return
an error. This class also allows for built-in fault tolerence by automatically failing over to a
“working” dictionary without the user of this class being aware that this being done. In
addition, this class defers the discovery of the Dictionary until its first use, thus eliminating
a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently
known good reference to the system dictionary. If the current reference returns a CORBA
failure in the delegated call, this class automatically switches to another reference. When
there are no good references (as is true the first time the object is used), this class issues a
trader query to (re)discover the published Dictionary objects in the system. During a
method call, the trader will be queried at most one time and under normal circumstances
(other than the first use) the trader will not be queried at all.

3.9.1.1.11 HARAudioClipDB (Class)

This class provides access to the database for the HARAudioClipManager. It provides a
means to store and retrieve recorded voice to/from the database.

3.9.1.1.12 HARAudioClipManager (Class)

This class provides the implementation of the AudioStreamer interface and is capable of
streaming recorded audio clips that have been previously stored. When requested to stream
an audio clip, this class pulls the audio data from its persistent store pushes the audio data to
the given AudioPushConsumer in a worker thread. This class also allows newly recorded
audio clips to be added to the system. When a clip is added to the system it is assigned a
unique 1D and a HARMessageAudioClip is created as a thin wrapper to provide access to
the audio data. When new audio clips are added to the system, the ID of the owner is passed
to facilitate clean up of the clip when it is no longer needed.

3.9.1.1.13 HARMessage (Class)

This utility class represents a message that is capable of being stored on a HAR. It stores
the HAR message as a HAR message header, body and footer. It contains methods to input
and output them in different formats.

3.9.1.1.14 HARMessageAudioClip (Class)

This class is a thin wrapper for recorded voice that is to be played on a HAR. This class is
passed around the system instead of passing the actual voice data. When the actual voice
data is needed to play to the user or to program the HAR device, this object’s streamer is
used to stream the actual voice data.

R1B2 Servers Detailed Design Rev. 0 3-135 04/17/01

3.9.1.1.15 HARMessageAudioCliplmpl (Class)

This class defines HARMessageAudioClip as defined in the IDL. Refer to
HARMessageAudioClip for details.

3.9.1.1.16 HARMessageAudioDataClip (Class)

This class is a message clip that contains audio data and the format of the audio data.
Because audio data can be very large, this type of clip is reserved for use when recorded
voice is first entered into the system. Recorded voice that already exists in the system is
passed throughout the system using HARMessageAudioClip to avoid sending the large
audio data when possible.

3.9.1.1.17 HARMessageAudioDataCliplmpl (Class)

This class implements the HARMessageAudioDataClip as defined in the IDL. Refer to
HARMessageAudioDataClip for details.

3.9.1.1.18 HARMessageClip (Class)

This class represents a section of a HAR message. It can be either plain text that would
need to be converted to audio prior to broadcast, or binary format (MP3, WAV, etc.)

3.9.1.1.19 HARMessagelmpl (Class)

This class is a concrete implementation of the HARMessage abstract class generated from
IDL.

3.9.1.1.20 HARMessagePrestoredClip (Class)

This class stores data used to identify the usage of a clip that has already been stored on a
HAR device.

3.9.1.1.21 HARMessagePrestoredClipimpl (Class)

This class implements HARMessagePrestoredClip as defined in IDL. Refer to
HARMessagePrestoredClip for details.

3.9.1.1.22 HARMessageTextClip (Class)

This class represents a HAR message content object that is in plain text format. This
message can be checked for banned words and will be converted into a voice message using
a speech engine to broadcast on a HAR device.

3.9.1.1.23 HARMessageTextCliplmpl (Class)

This class implements HARMessageTextClip as defined in the IDL. Refer to
HARMessageTextClip for details.

R1B2 Servers Detailed Design Rev. 0 3-136 04/17/01

3.9.1.1.24 HARPIlanltemData (Class)

This class is used to associate a message with a HAR for use in Plans.

3.9.1.1.25 HARPIlanltemDatalmpl (Class)

This class is a concrete implementation of the HARPIlanltemData abstract class generated
from IDL.

3.9.1.1.26 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a
command to put a message on a HAR when executed. When the item is executed, it adds
the message to the arbitration queue of the specified HAR. When the item is removed from
the response plan (manually or implicitly through closing the traffic event) the item asks the
HAR’s arbitration queue to remove the message.

3.9.1.1.27 HARRPIDatalmpl (Class)

This class is a concrete implementation of the HARRPIData abstract class generated from
IDL.

3.9.1.1.28 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.9.1.1.29 java.lang.ThreadGroup (Class)

A thread group represents a set of threads.

3.9.1.1.30 java.util.LinkedList (Class)

This class is an implementation of List interface for a linked list.

R1B2 Servers Detailed Design Rev. 0 3-137 04/17/01

3.9.2 Sequence Diagrams

3.9.2.1 HARUtility:PushAudio (Sequence Diagram)

This diagram shows how audio data is pushed back to the client. The
AudioPushThreadManager manages a pool of threads that can be used to push audio data
back to the clients. When a request is made to push audio, the AudioPushThreadManager
looks in the thread list for a free thread. If all the threads are being used, the request waits
until a thread becomes available. Once a thread becomes available, the thread is notified of
the clip by setting the clip data and the thread starts pushing the audio data by first pushing
the audio properties. Then, the thread starts to push the audio data in chunks of the size
requested by the client. If the pushing operation fails, an error is passed to the consumer. At
the completion of pushing, the thread clears the clip data and informs the
AudioPushThreadManager to free the thread. The AudioPushThreadManager in turn frees
the thread and notifies any waiting request.

m_inUseThreads ‘ ‘ AudioPushThread ‘

m_freeThreads ‘

;Ot ‘ AudioPushTl ‘

Client

[if a free thread
is not available]
wait

e

getFirst

K AudioPushThread-——

F—remove(AudioPushThread)—{

[while more audio data

no error pushing data] pust
[while not
shutc]

[error pushing data]
pushFailure

Clear Clip Info

F—add(AudioPushThread)—>1

notify

L

Figure 95. HARULtility:PushAudio (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-138 04/17/01

3.9.2.2 HARUtility:StoreAudioClip (Sequence Diagram)

When a CHART2HARImpl or the MessageLibraryDB object have been passed a HAR
message that contains a HARMessageAudioDataClip, the HARAudioClipManager is called
to store the voice data and create a thin wrapper object that represents the voice data. This
thin wrapper is passed around the system instead of the voice data itself. The thin wrapper
contains a reference to the HARAudioClipManager which will push the voice data to any
holders of the thin wrapper that request the actual voice data.

A

Chart2HARImpl HARAudioClipManager IdentifierGenerator HARAudioClipDB

OR
MessageLibraryDB

storeAudioDataClip—>

createldentifier

Identifier

storeAudioClip

[failure] .
CHART2ExcaRtion HARAudioClipManager ﬁ

stores itself as the streamer
for the audio data in the
audio clip.

create

HARMessageAudioClip

S HARMessageAudioClip------1

Figure 96. HARUItility:StoreAudioClip (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-139 04/17/01

3.10 JavaClasses

3.10.1 Classes

3.10.1.1 JavaClasses (Class Diagram)

This package is included for reference to classes included in the Java programming
language that are used in class and sequence diagrams for other packages within this
design.

javalang.Thread java.sgl.Statement java.sgl.Connection

javax.swing.JTabbedPane

start()

interrupt()
setDaemon(boolean)
run():void

executeQuery(string query):ResultSet
executeUpdate(string):int

createStatement():Statement

java.lang.Object

javax.swing.JFrame

hashCode()
equals()

show

java.util. TreeMap

java.lang.Runnable

put(Object key, Object value) run() actionPerformed() keyPressed
get(Object key):value keyReleased
keyTyped

javax.swing.table.
AbstractTableModel

java.io.File

java.util.LinkedList

getFirst():Object
add(Object)

javax.swing.tree.
MutableTreeNode

java.io.InputStream

java.util.Hashtable

java.util.Properties

getProperty()
setProperty()

java.awt.event.ActionListener

java.util. TimerTask

run

java.awt.event.KeyListener

javax.swing.tree.
DefaultTreeModel

javalang.ThreadGroup

javax.sound.sampled.AudioSystem

javax.swing.JOptionPane

java.awt.Component

showMessageDialog
showOptionDialog

Figure 97. JavaClasses (Class Diagram)

R1B2 Servers Detailed Design Rev. 0

3-140

java.util. Timer

schedule
cancel

java.awt.event.ltemListener

04/17/01

3.10.1.1.1 java.awt.Component (Class)

This class is the base class for all graphical user interface components such as buttons and
panels.

3.10.1.1.2 java.awt.event.ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

3.10.1.1.3 java.awt.event.ltemListener (Class)

This interface allows the implementing class to listen for changes to an item such as a list
item or combo box item.

3.10.1.1.4 java.awt.event.KeyListener (Class)

Interface that a class must realize in order for objects of that class to be notified when the
user presses a key.

3.10.1.1.5 java.io.File (Class)

This class is an abstract representation of file and directory pathnames.

3.10.1.1.6 java.io.InputStream (Class)

Java class that represents a input stream of bytes.

3.10.1.1.7 java.lang.Object (Class)

This is the base class from which all Java classes inherit.

3.10.1.1.8 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.10.1.1.9 java.lang.Thread (Class)

This class represents a java thread of execution.

3.10.1.1.10 java.lang.ThreadGroup (Class)

A thread group represents a set of threads.

R1B2 Servers Detailed Design Rev. 0 3-141 04/17/01

3.10.1.1.11 java.sqgl.Connection (Class)

This class represents a connection (session) with a specific database.

3.10.1.1.12 java.sgl.Statement (Class)
Java class used for executing a static SQL statement and obtaining the results produced by
it.

3.10.1.1.13 java.util.Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any
non-null object can be used as a key or as a value. Objects used as keys implement the
hashCode method that is inherited by all objects from the java.lang.Object class.

3.10.1.1.14 java.util.LinkedList (Class)

This class is an implementation of List interface for a linked list.

3.10.1.1.15 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to
a stream or loaded from a stream. Each key and its corresponding value in the property list
is a string. A property list can contain another property list as its “defaults”; this second
property list is searched if the property key is not found in the original property list.

3.10.1.1.16 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or
recurring execution.

3.10.1.1.17 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one
or more times.

3.10.1.1.18 java.util.TreeMap (Class)

This class is an implementation of the SortedMap interface. This class guarantees that the
map will be in ascending key order, sorted according to the natural order for the key’s class,
or by the comparator provided at creation time, depending on which constructor is used.

3.10.1.1.19 javax.sound.sampled.AudioSystem (Class)

The AudioSystem class acts as the entry point to the sampled-audio system resources. This
class lets you query and access the mixers that are installed on the system.

R1B2 Servers Detailed Design Rev. 0 3-142 04/17/01

3.10.1.1.20 javax.swing.JFrame (Class)

Java class that displays a frame window.

3.10.1.1.21 javax.swing.JOptionPane (Class)

This class is used to display popup messages to an end user.

3.10.1.1.22 javax.swing.JTabbedPane (Class)

This class is a component that has tabbed pages, and the user can click on a tab to flip to a
certain page.

3.10.1.1.23 javax.swing.table. AbstractTableModel (Class)

This class provides a base implementation of the TableModel interface. This data structure
will be used to supply a JTable with data.

3.10.1.1.24 javax.swing.tree. DefaultTreeModel (Class)

This class is the data structure that is used as a foundation for the JTree class.

3.10.1.1.25 javax.swing.tree. MutableTreeNode (Class)

This interface extends the TreeNode interface and provides the ability to add and remove
children from nodes. It may be used in a TreeModel.

R1B2 Servers Detailed Design Rev. 0 3-143 04/17/01

3.11 MessageLibraryModule

3.11.1 Classes

3.11.1.1 MessagelLibraryModuleClasses (Class Diagram)

The MessageLibraryModule is a Service Application module that serves the
MessageL.ibraryFactory, MessageLibrary and StoredMessage objects to the rest of the
CHART2 system. This diagram shows how the implementation of these CORBA interfaces
rely on other supporting classes to perform their functions.

ServiceApplicationModule

MessageLibraryFactory

1 intialze(ServiceAppication app)-boolean
\pp createLibrary(AccessToken token,string name):MessageLibrary
getLibraryList():MessageLibraryList

FU

MessageLibraryDB
MessageLibraryDB(DBConnectionManager) 1 MessageLibraryModule -
getMessageLibraryList():String(l MessagelLibraryFactorylmpl
getStorediessages():StoredMessage(] 1 1
insertStoredMessage() 1 >
deleteStoredMessage() getDB():MessageLibraryDB
updateStoredMessage() 1 1| ge MessageLibraryFactorylmpl(MessageLibraryModule)
insertMessageLibrary() QetPOA():POA
deleteMessageLibrary() getTradingRegister():Register 1
updateMessageLibraryName() 1 | getTradingLookup():Looku
getServiceApplication():ServiceApplication
1 getDictionary():Dictionary
1 1] 1
DBConnectionManager
MessageLibrary
1 setName(AccessToken token, String name):void
Dictionary createStoredMessage(Access Token token,
StoredMessage Message msg,
string description,
string category):StoredMessage
getStoredMessages():StoredMessageList
isUsedByAnyPlan():boolean
e ecdMessageData isMessageUsedByAnyPlan(identifier msgiD):boolean
Token,
Message 1 1| setMessage{AccessToken, Message)void remove(AccesaToken)-void
string description,
string category,
void: Message msg)void
validateMessageContent():void; remove(AccessTokenyvaid
StoredMessagelmpl - * MessageLibrarylmpl

MessageLibraryimpl(MessageLibraryModule)

HARMessage DMSMessage

Figure 98. MessageLibraryModuleClasses (Class Diagram)

3.11.1.1.1 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART Il system thread requiring database access gets a database
connection from the pool of connections maintained by this manager class. The connections
are maintained in two separate lists namely, inUseL.ist and freeList. The inUseL.ist contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor

R1B2 Servers Detailed Design Rev. 0 3-144 04/17/01

thread that is started by the constructor. This connection monitor thread periodically checks
the inuseL.ist to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

3.11.1.1.2 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that
are approved or banned from being used in a CHART2 messaging device. Examples of
messaging devices are DMS, HAR etc.

3.11.1.1.3 DMSMessage (Class)

The DMSMessage class is an abstract class that describes a message for a DMS. It consists
of two elements: a MULTI-formatted message and beacon state information (whether the
message requires that the beacons be on). The DMSMessage is contained within a
DMSStatus object, used to communicate the current message on a sign, and is stored within
a DMSRPIData object, used to specify the message that should be on a sign when the
response plan item is executed.

3.11.1.1.4 HARMessage (Class)

This utility class represents a message capable of being stored on a HAR. It stores the HAR
message as a HAR message header, body and footer. It contains methods to input and
output them in different formats.

3.11.1.1.5 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

3.11.1.1.6 MessagelLibrary (Class)

This class represents a logical collection of messages that are stored in the database.

3.11.1.1.7 MessageLibraryFactory (Class)

This class is used to create new message libraries and maintain them in a collection.

3.11.1.1.8 MessagelLibraryFactorylmpl (Class)

The MessageL.ibraryFactorylmpl class provides an implementation of the

MessageL ibraryFactory interface as defined in the IDL. The MessageL.ibraryFactory
maintains a list of MessageLibrarylmpl objects and is responsible for publishing
MessageL.ibrary objects in the Trader.

R1B2 Servers Detailed Design Rev. 0 3-145 04/17/01

3.11.1.1.9 MessagelLibraryDB (Class)

The MessageLibraryDB class is a collection of methods that perform database operations
on tables pertinent to Message Library Management. The class is constructed with a
Connection Manager object, which manages database connections. Every operation in this
class obtains a connection to the database from the connection manager prior to performing
the requested DB operation.

3.11.1.1.10 MessageLibrarylmpl (Class)

The MessageL.ibrarylmpl class provides an implementation of the MessageL.ibrary interface
as specified in the IDL. The MessageL.ibrary maintains a list of StoredMessage objects and
is responsible for publishing StoredMessage objects in the Trader.

3.11.1.1.11 MessageLibraryModule (Class)

This class implements the ServiceApplicationModule interface. It creates and serves a
single MessageL.ibraryFactorylmpl object, which in turn serves MessageL.ibrarylmpl
objects. This module also serves StoredMessage objects that were created in the message
libraries being served by this module.

3.11.1.1.12 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

3.11.1.1.13 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.11.1.1.14 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

R1B2 Servers Detailed Design Rev. 0 3-146 04/17/01

3.11.1.1.15 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains
attributes such as category and message description which are used to allow the user to
organize messages.

3.11.1.1.16 StoredMessagelmpl (Class)

The StoredMessagelmpl class provides an implementation of the StoredMessage interface
as specified in the IDL.

R1B2 Servers Detailed Design Rev. 0 3-147 04/17/01

3.11.2 Sequence Diagrams

3.11.2.1 MessageLibraryModule:CreateDMSStoredMessage (Sequence Diagram)

An operator with the correct functional rights may create a stored message for display on a
DMS device. The GUI will create a Message object based on the type of stored message the
user would like to create. In this case, a DMSMessage object is created. The message
library is called to create a stored message. The message library will check if the user has
the appropriate rights. If they do, the message will be checked for banned words. If the
message contains banned words, an error is returned. If not, a stored message is created, the
newly created stored message data is inserted into the database and the stored message
object will be published in the CORBA trading service and other system components will
be notified of its existence via the CORBA event service. Note that even though a
dictionary check is done at the time of storage, the dictionary is always checked on the
server side prior to allowing a message to be set on a DMS. The user and operation details
are logged in the operations log.

o("Stored Message Added’)

X

Figure 99. MessageLibraryModule:CreateDMSStoredMessage
(Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-148 04/17/01

3.11.2.2 MessageLibraryModule:CreateHARStoredMessage (Sequence Diagram)

An operator with the correct functional rights may create a stored message for use on a
HAR device. The GUI will create a Message object based on the type of stored message the
user would like to create. In this case, a HARMessage object is created. A HARMessage
consists of three HAR message clips that can either be in binary or text format. The
message library is called to create a stored message. The message library will check if the
user has the appropriate rights. If they do, the message is validated by calling the Dictionary
to check for disapproved words. Note that only the clips that are in text format will be
checked for banned words. If the message contains banned words, an error is returned. If
not, a stored message is created, the newly created stored message data is inserted into the
database and the stored message object will be published in the CORBA trading service and
other system components will be notified of its existence via the CORBA event service.
Note that even though a dictionary check is done at the time of storage, the dictionary is
always checked on the server side prior to downloading the message to the HAR. The user
and operation details are logged in the operations log.

R1B2 Servers Detailed Design Rev. 0 3-149 04/17/01

Operator

To initiate this use case
the user selected "Add
HAR Text Stored Message"
from the menu and enters
the message.

1| The user will choose ignore,

change, or AddWord for each
unknown word. See
AddApprovedWords sequence
diagram for details regarding
what happens then the user
chooses to add the word

MessageLibrarylmpl

TokenManipulator

‘ Dictionary ‘ | POA |

MessageLibraryDB

CosEvent:
ServiceApplication | PushConsumer

OperationsLog

heck

for any unknown word:

/‘ HARMessage

he user can choose to use

StoredMessagelmpl

etHeader
“| the default header and footer
etBoh | instead of entering a header and
footer.
(Trailer
[no rights]
log
[no rights]
AccessDenied
[if text clip]
[for each Ciip] checkForBannedWords |
[E—
[message contains
banned words]
DisapprovedMessageContent
message contains
[message contains banned words}
< ~banned words] - delete
DisapprovedMessageContent
create——

[Database Error].
CHART2Exception

-activate_object:

resgisterObject

X

log("s

tored Message added”

Figure 100. MessageLibraryModule:CreateHARStoredMessage
(Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-150

04/17/01

3.11.2.3 MessageLibraryModule:CreateMessageLibrary (Sequence Diagram)

A user possessing the proper functional rights can add a Message Library to the system.
The library object is created and published via the CORBA Trading Service. An event is
pushed via the CORBA Event Service to notify interested parties of the new library. The
user and operation details are logged in the operations log.

I | ik Factoryimpl

ORBr

TokenManipulator

ServiceApplication CosEvent:PushConsumer

OperationsLog

MessageLibraryDB I | POA I

createLibrary

[no rights]
log

[no rights]
AccessDenied

[Database Error] r ibrar
CHART2Exception

MessageLibrarylmpl

activate_object

registerObject;

push(LibraryAdded)

log("Message Library added"y

Figure 101. MessageLibraryModule:CreateMessageLibrary (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-151 04/17/01

3.11.2.4 MessageLibraryModule:DeleteMessageLibrary (Sequence Diagram)

A user with the proper functional rights can remove a Message Library from the system.
This will include the removal of all stored messages contained within the library. Since
stored messages may be used in Plans, a check is made for any plans that may contain the

stored messages being deleted and the user is warned. If the user acknowledges the

deletions, each message within the library is removed, events are pushed to notify others of
the action, and the library is removed from the Trading Service. The user and operation
details are logged in the operations log.

TokenManipulator

s =

Messagelibraryimpl

|MP agel Factoryimpl

CosTrading:
Message | MessageLibraryDB POA Register P

Operator

[-removeMessageL ibrary—}

P Mo rights]_____|
AccessDenied

[no rights]

| see IsMessageLibraryUsedByanyPlan
sequence digram for details.

ri
AccessDenied

sssssssssss

[Datab:

ase error]
CHART2Exception
L _[Database error]
CHART2Exception

[no rights]
log

Database error]___|
CHART2Exception

X

log("Message Library deleted")

Figure 102. MessageLibraryModule:DeleteMessageLibrary (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-152

04/17/01

3.11.2.5 MessageLibraryModule:DeleteStoredMessage (Sequence Diagram)

A user with the proper functional rights may remove a stored message from the system.
Since a stored message may be used in a plan, a check is made to see if the message is used
in a plan so that the user can be warned accordingly. The act of deleting the stored message
involves deleting the message, updating the database and pushing an event to notify others
that the message has been removed from its library. The user and operation details are
logged in the operations log.

()
s

TokenManipulator | | MessageLibrarylmpl

‘ Message | MessageLibraryDB

X au

Operator

StoredMessagelmpl

CosTrading: CosEvent:
POA Register PushConsumer | | OperationsLog

— [norights]_______
AccessDenied

nyPlan:

i< [Planitem is using See edByAnyPlar
[Planitem using sequence duagram for details.

Warn User

[no rights
log

[no rights]
CHART2Exception

— [norights]_______
AccessDenied

log("Stored Message deleted"y

X
Figure 103. MessageLibraryModule:DeleteStoredMessage (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-153 04/17/01

3.11.2.6 MessageLibraryModule:Initialize (Sequence Diagram)

This sequence diagram shows the startup for the Message Library Module. This module is
created by a service that will host this module’s objects. A ServiceApplication is passed to
this module’s initialize method and provides access to basic objects needed by this module.
This module creates a Message Library Factory that in turn creates Message Library
objects. Message Library objects contain Stored Message objects that are created by the
Message Library DB at startup. The MessageL.ibraryFactory, MessageL.ibrary and
StoredMessage objects are published via the CORBA Trading service to make them
available for modifications (given the proper access rights) and usage.

Messagel | — |

—getDefaultProperties—>4

CosTrading:Lookup

Application Service

——getTradingRegister
——getTradingLookup——>}
FgetDBConnectionManager—>4

F-getEventChannelFactory—>
getPOA——

rea PushEventSupplier

registerObject
(PushEventSupplier)

| MessageLibrarypB
j —

| MessageLibraryFactoryimpl

[* for each Message Library] | MessageLibraryimpl
create

Note: DB creates the Stored
Messages of the appropriate
message type and returns the objects.

braryDB:

ik—getMessageLibraryList—

ibraryDB

gelPO [* for each
F——sStored Message]——>4
activate_object

\pp

[* for each Stored Message
registerObject

[for each MessageLibraryimpl]
activate_object

pl
* for each MessageLibraryimpl]
registerObject

-activate_ yimpl

registerObject
WessageLibraryFactorymp) |

Figure 104. MessageLibraryModule:Initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-154 04/17/01

3.11.2.7 MessageLibraryModule:lIsMessageLibraryUsedByAnyPlan(Sequence Diagram)

This sequence diagram shows how a user can check if a plan is using the stored messages
of a particular message library.

X

GUI

isUsedByAnyPlan———>

MessageLibrarylmpl

el
I
S

Planitem

query.

CosTrading:Lookup

[* for each Plan] S
isUsingObject

<[isUsing a Sttored Message]
true

[plan using library]
true

[* for each Planitem] N
isUsingObject
é_‘[is using a Stored Message] _

[all plans]

true

Figure 105. MessageLibraryModule:lsMessageLibraryUsedByAnyPlan
(Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-155

04/17/01

3.11.2.8 MessageLibraryModule:lsStoredMessageUsedByAnyPlan (Sequence Diagram)

This sequence diagram shows how a user can check if a plan is using a particular stored

CosTrading:Lookup

message.
% MessagelLibrarylmpl Plan Planitem
GUI
[—isMessageUsedByAnyPlan—>}
query.
[all plans]
[* for each Plan]
isUsingObject
[* for each Planitem] S
isUsingObject
S [is using Stored Message]....._.__:
true
ic......[is using StoredMessage] ...
— [plan using Message]..._..__. true
true

Figure 106. MessageLibraryModule:IsStoredMessageUsedByAnyPlan
(Sequence Diagram)

R1B2 Servers Detailed Design Rev.

0

3-156

04/17/01

3.11.2.9 MessageLibraryModule:ModifyDMSStoredMessage (Sequence Diagram)

A user with the proper functional rights can edit a stored message. The proposed contents
for the stored message are checked against the dictionary prior to allowing the new content
to be set. The state of the beacons associated with the message is also checked to make sure
the beacons are not turned on for a message with no text. An event is pushed via the
CORBA Event Service to notify others of the change to the stored message’s contents. The
user and operation details are logged in the operations log.

; : D Dictionary MessageLibraryDB | | CosEvent:PushConsumer | | OperationsLog
Operator ‘ ‘ ‘ ‘ ‘ ‘ ‘ |
User is shown the current
contents of the message in
a Message editor dialog box
o edit the message.
p DI for each unknown word

The user will alter

their message text Ve

by either ignoring |,/

the suggestion, using

the suggestion, or

adding the word to

the dictionary.

[no rights]
log
[no rights]
AccessDenied
A [message contains banned words] _______
L [message contains banned words] DisapprovedMessageContent
DisapprovedMessageContent

validateBeaconState

,,,,,,,,,,,,,,,,,,,,,,,,,, [invalid beacon state]
DisapprovediessageContent

,,,,,,,,,,,,, [invalid beacon state],
DisapprovedMessageContent

[Database error]
CHART2Exception

log("Stored Message modified")

Figure 107. MessageLibraryModule:ModifyDMSStoredMessage
(Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-157 04/17/01

3.11.2.10 MessageLibraryModule:ModifyHARStoredMessage (Sequence Diagram)

A user with the proper functional rights can edit a stored HAR message. The proposed
contents for the stored message are checked against the dictionary if it is in text format. An
event is pushed via the CORBA Event Service to notify others of the change to the stored
message’s contents. The user and operation details are logged in the operations log.

o

——

Operator ‘

Dictionary ‘

MessageLibraryDB

CosEvent:PushConsumer

OperationsLog

contents of the message in
a Message editor dialog box
to edit the message.

"Format HAR Message"

User is shown the current g

uuuuu

ion for each unknown word

The user will alter
their message text

by either ignoring

the suggestion, using
the suggestion, or
adding the word to
the dictionary.

[no rights].
AccessDenied

[if HAR text message and

DisapprovedMessageContent

[<--message contains banned words}—

—---message contains banned words]-------

fog("no rights”

[* for each Clip

[if HAR text message and

DisapprovedMessageContent

[if text clip]
checkForBannedWords

[Database error]
CHART2Exception

Figure 108. MessageLibraryModule:ModifyHARStoredMessage

R1B2 Servers Detailed Design Rev. 0

log("Stored Message modified")

(Sequence Diagram)

3-158

04/17/01

3.11.2.11 MessageLibraryModule:SetLibraryName (Sequence Diagram)

A user with the proper functional rights may set the name assigned to a message library. An
event is pushed via the CORBA Event Service to notify others of the name change. The

user and operation details are logged in the operations log.

MessagelLibrarylmpl

TokenManipulator MessagelibraryDB

ORB

etName

checkAccess:

PushEventSupplier

[no rights]

OperationsLog

[no rights]
AccessDenied

log;

,,,,,,,,,,,,,, [database error]
CHART2Exception

updateN

jeLibraryName

push(LibraryNameChanged)

log("Library Name Changed")

Figure 109. MessageLibraryModule:SetLibraryName (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-159

04/17/01

3.11.2.12 MessagelLibraryModule:Shutdown (Sequence Diagram)

The MessageLibraryModule is shutdown by its host application. When told to shutdown,
the MessageL.ibraryModule deactivates the MessageL.ibraryFactory from the POA, and
shuts down the object. When the MessageL.ibraryFactory is shut down, deactivates each
library from the POA and shuts down the object. The MessageL.ibrary deactivates any
StoredMessage objects that it is serving.

X

Application Service

MessageLibraryModule MessageLibraryFactorylmpl MessageLibrarylmpl StoredMessage CosTrading.Register

| — |

shutdown———>

[* for each Stored
deactivate_object

shutdown

[* for each Message Library Impl]
deactivate_object

x ivate_object(PushEventSupplier)

X
Figure 110. MessageLibraryModule:Shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-160 04/17/01

3.11.2.13 MessageLibraryModule:ViewDMSStoredMessage (Sequence Diagram)

The GUI discovers the contents of a DMS stored message during startup. The GUI is
notified of changes to the contents of the DMS stored message via a CORBA event
channel. When notified of such changes, the GUI updates itself so the user is always shown
the latest information pertaining to the DMS stored message. The user and operation details
are logged in the operations log.

% StoredMessage DMSMessage CosTrading:Register %
Operator

Operator

All StoredMessage objects query_

are pubished i the tracer. ffor al Storeclvssage objects]
At startup a list of all the
StoredMessage objects

is obtained by querying the trader.

~| CosEvent:PushConsumer

ush(Sto hanged)

All the status updates for

StoredMessage objects are —push(StoredMessageChanged)—
notified to the operator by pushing

events through the CORBA event service .

Figure 111. MessageLibraryModule:ViewDMSStoredMessage (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-161 04/17/01

3.11.2.14

MessageLibraryModule:ViewHARStoredMessage (Sequence Diagram)

The GUI discovers the contents of a HAR stored message during startup. The GUI is
notified of changes to the contents of the HAR stored message via a CORBA event channel.
When notified of such changes, the GUI updates itself so the user is always shown the latest
information pertaining to the HAR stored message. The user and operation details are
logged in the operations log.

Al StoredMessage objects

are published in the trader

At startup a list of all the
StoredMessage objects

is obtained by querying the trader.

£ |

| TTSConverter

‘ ‘ HARMessage

Operator

CosTrading:Register

query.
[for all HARStoredMessage objects

getHeader

getBody

-getFooter

etHeader

etBod

All the status updates for
StoredMessage objects are
notified to the operator by pushing
events through the CORBA

event service

[while "getNext
returns more
AudioData"]

~| CosEvent:PushConsumer

hanged)

To initiate this the user
selected "Play Message”
from the menu.

convertTextToSpeech:

]

‘AudioD

“Start Playing
Audio Data”

+ First Audio Data Chunk-——

AudioDatalterator
—create

"Play Audio Data"

X

TTSConverter will call
o the TTS Engine APl to
Jayz,, ,,,,,, .| convert text to speec|

i—push(StoredVessageChanged)—{

£

Operator

Figure 112. MessageLibraryModule:ViewHARStoredMessage (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-162

04/17/01

3.12 PlanModule

3.12.1 Classes

3.12.1.1 PlanModuleClasses (Class Diagram)

This is an installable module that serves the PlanFactory, Plan, and Planltem objects to the
rest of the CHART2 system.

PlanFactory
ServiceApplicationModule

createPlan(AccessToken token,
i \pplication string name):Plan
shutdown(ServiceApplication app):boolean getPlans():PlanList

PlanModule PlanFactorylmpl
1 1| m_devicePlanCollection
m_offertiDs
4 PlanFactoryimpl(ServiceApplication, PushEventSupplier, PlanDB)
1 getPlanOfferiDs() 1
removePlan(Object)
shutdown
1 1 1
1
:
PushEventSupplier | 1
t 1 1
Plan

ServiceApplication PlanDB

11
<>—‘ DBConnectionManager

setName(Access Token,string):void

iditem (Access Token,PlanktemData):Plantem getPlanList
removeftem(AccessToken,Planitem):void insertPlan
getitems():PlanitemList deletePlan
Planitem remove(AccessToken):void insertPlanitem
isUsingObject(IdentifierList objectiDs) deletePlanitem
getPlanitems
setPlanName
setName(AccessToken, string):void
setData(AccessToken, PlanitemData):void 1 1
getData():PlanitemData
remove(Access Token):void i
getPlanID():Identifier i *
isUsingObject(IdentifierList):boolean i
Planimpl
1 N
S mid o
m_name
* Planimpl(ServiceApplication , PushEventSupplier, PlanDB, PlanFactoryimpl)
removeltem()
Planitemimpl
. K]
m_id
m_name
m_planitemData

Planitemimpl(Planimpl, PushEventSupplier,
PlanDB, PlanitemData)

1

1

Planitem Data

Figure 113. PlanModuleClasses (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-163 04/17/01

3.12.1.1.1 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART Il system thread requiring database access gets a database
connection from the pool of connections maintained by this manager class. The connections
are maintained in two separate lists namely, inUseL.ist and freeList. The inUseL.ist contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor
thread that is started by the constructor. This connection monitor thread periodically checks
the inuseL.ist to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

3.12.1.1.2 Plan (Class)

A Plan is a group of actions listed out in advance to be used in response to a traffic event.
Each action is defined to be a Plan item. The Plan supports functionality to add and remove
plan items.

3.12.1.1.3 PlanDB (Class)

This class contains the methods that perform database operations for the Plan module. It is
constructed with a Database object that provides the connections to the database server. All
the methods in this class get a new connection to the database before performing any
operation on the database. The connection is released at completion of the operation.

3.12.1.1.4 PlanFactory (Class)

This class creates, destroys, and maintains the collection of plans that can be used in the
system.

3.12.1.1.5 PlanFactorylmpl (Class)

This class implements the PlanFactory interface and enables the management of the Plan
objects by other processes. It creates, publishes and deletes the objects that implement the
Plan interface.

3.12.1.1.6 Planimpl (Class)

This class implements the Plan interface and provides the implementation for the methods
defined in the interface. It also manages the database operations for the Planltems contained
in this Plan.

R1B2 Servers Detailed Design Rev. 0 3-164 04/17/01

3.12.1.1.7 Planltem (Class)

This class represents an action within the system that can be planned in advance. This
CORBA interface is subclassed for specific actions that can be planned in the system.

3.12.1.1.8 PlanltemData (Class)

This class is a valuetype that is the base class for data stored in a plan item. Derived classes
contain specific data that map a device to an operation and the data needed for the
operation. For example a derived class provides a mapping between a specific DMS and a
DMSMessage.

3.12.1.1.9 PlanltemImpl (Class)

This class implements the Planitem interface.

3.12.1.1.10 PlanModule (Class)

This module creates, publishes and deletes the objects that implement the PlanFactory
interface.

3.12.1.1.11 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

3.12.1.1.12 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.12.1.1.13 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

R1B2 Servers Detailed Design Rev. 0 3-165 04/17/01

3.12.2 Sequence Diagrams

3.12.2.1 PlanModule:AddItem (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can add an item to
an existing plan in the system. An AccessDenied exception is returned if the user does not
have the right to add an item to the plan. Otherwise, a Planltem object is created and added
to the database. A PlanltemAdded event is pushed through the event channel to notify other
processes that a plan item has been added to this plan. User actions are logged to the

operations log.

£

ORB

‘ PlanDB

o

OperationsLog

cessDeni

R [Database error]
CHART2Exception

PlanitemImpl

[no rights].
log

mimply

registerObj

t(Planitemim,

pl)

push(Planitem.

R1B2 Servers Detailed Design Rev. 0

3-166

Figure 114. PlanModule:AddIltem (Sequence Diagram)

04/17/01

3.12.2.2 PlanModule:AddPlan (Sequence Diagram)

This diagram shows how a user with proper functional rights can add a plan to the system.
An AccessDenied exception is returned if the user does not have the functional right to add
a plan. Otherwise, the plan object is created and added to the database. The plan object is
published in CORBA Trader service and a PlanAdded event is pushed through the event
channel to notify the other processes that a new plan has been added.

TokenManipulator

| PlanDB | ‘ POA

| PlanFactorylmpl

ORB

[|

[no rights]
log

- Planimpl

k... [Databaseerrorl
CHART2Exception

registerObject(Plany

Figure 115. PlanModule:AddPlan (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-167 04/17/01

3.12.2.3 PlanModule:Initialize (Sequence Diagram)

This sequence diagram shows the startup for the Plan Module. An ApplicationService will
initialize this module. The references to basic services such as POA, Trader, Event channel
and database are obtained from the ServiceApplication. This module creates a Plan Module

specific database object. It also creates the PlanFactory object, which creates the Plan

objects from the plan list obtained from the database. The Plan objects are published in the
trader. An event channel is created to push the events to clients and it is published in the
trader register. The Offer IDs of all the objects that were published in the trader are saved to
a file so that they may be withdrawn.

Application Service

PlanModule

initiali

e

F—getDefaultProperties

getProperties:

——getTradingLookup-

i-getDBConnectionManager—>{

i—getEventChannelFactory—>{

getPOA

ServiceApplication

PushEventSupplier

activate_object(PushEventSupplier)

registerObject N
(PushEventSupplier)

PlanFactorylmpl
L:I

getPlanList

L create > Planimpl

[* for each

Planitem]

activate_object(Planitem)—>{

registerObject(Planitem)

[* for each Plan]

registerObject(Plan)

registerObject
(PlanFactorylmpl)

R1B2 Servers Detailed Design Rev. 0

-activate_object(Planimpl)

activate_object(PlanFactorylmpl))

3-168

Figure 116. PlanModule:Initialize (Sequence Diagram)

04/17/01

3.12.2.4 PlanModule:PlanlsUsingObject (Sequence Diagram)

This sequence diagrams shows how to check if a plan is using a particular set of objects.
The IDs of the object are passed to the Plan object to check if its Planltems are using these
objects. If a Planltem is using any object, the Plan returns true.

i PlanFactoryimpl Planimpl Planitem

ORB

isUsingObject———>

isUsingObject—— >

isUsingObject—— =

[* for each Plan] [* for each Planltem]

[Plan ltem Using Object] true

true

| ____[Plan ltem Using Object]
true

[if none of the Planitems are
[S —— using this object]------=rrmrmreeeey
false

false

Figure 117. PlanModule:PlanIisUsingObject (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-169 04/17/01

3.12.2.5 PlanModule:PlanltemlsUsingObject (Sequence Diagram)

This sequence diagrams shows how to check if a plan item is using an object from a set of
objects. The IDs of the objects are passed to the Planltem object. If the Planltem is using

any object, it returns true.

@)
-1 Planitem PlanitemData
ORB
isUsingObject
isUsingObject——— =
[if using]
true
e [ifnotusing] ... |

true or falsg-------------------------1

false

Figure 118. PlanModule:PlanitemIsUsingObject (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-170

04/17/01

3.12.2.6 PlanModule:Removeltem (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can remove a plan
item from a plan in the system. An AccessDenied exception is returned if the user does not
have the right to remove an item from the plan. Otherwise, the plan item is deleted from the
database and the object is destroyed. An event is pushed through the event channel to notify
other processes that the plan item has been removed from the plan. User actions are logged
to the operations log.

‘ Planitem ‘

ORB

TokenManipulator

OperationsLog

‘ Planimpl ‘ | PlanDB I | PushEvenlSugghevI ICosTrad\ng,Reg\sler

| POA I

[AccessDenied]
[no right] log(AccessDenied)
AccessDenied

lanitem

_object(Planitem)

[Database error]
k... [Databaseerror] CHART2Exception
CHART2Exception

X
Figure 119. PlanModule:Removeltem (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-171 04/17/01

3.12.2.7 PlanModule:RemovePlan (Sequence Diagram)

This sequence diagram shows how a user with proper rights can delete a Plan from the
system. An AccessDenied exception is returned if the user does not have the functional
right to delete a Plan. Otherwise, the Plan is deleted from the database and the object is
destroyed. The Plan is withdrawn from the trader and a PlanRemoved event is pushed
through the event channel to notify the clients that the plan has been deleted. Note that the
deletion of a plan results in the deletion of all the plan items that are used in the plan from

the system and the database. The user actions are logged to the operations log.

‘ Planimpl ‘

PlanFactoryimpl

| PlanDB |

OperationsLog

[no rigl

ts].

Cl

cessDenied

o

Database error].
HART2Exceplor,

log

R1B2 Servers Detailed Design Rev. 0

Figure 120. PlanModule:RemovePlan (Sequence Diagram)

X

3-172

04/17/01

3.12.2.8 PlanModule:RemovePlanFromFactory (Sequence Diagram)

This sequence diagram shows how a Plan object is removed from the Plan Factory when a
Plan is deleted from the system.

0
>

% PlanFactoryimpl CosTrading.Register POA PlanDB

Caller

removePlan(Obj)

"Find Object in the List"

withdraw(Planimpl)

deactivate_object(Planimpl)

AolatePl
deletePlan

"Remove Object from List"

Figure 121. PlanModule:RemovePlanFromFactory (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-173 04/17/01

3.12.2.9 PlanModule:SetPlanltemData (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can change the
PlanltemData object of a plan item. An AccessDenied exception is returned if the user does
not have the right to modify the plan item. Otherwise, the PlanltemData is updated and
stored in the database. An event is pushed through the event channel to notify other
processes that the plan item has been changed. User actions are logged to the operations

log.
o))

j< Planitemimpl TokenManipulator PlanDB PushEventSupplier OperationsLog
ORB

setDatar

checkAccess
[no rights]
[no rights] log

AccessDenied

etPlanitemData-
[Database error]_____
CHART2Exception

push(Planitem Changed)

log(Plan ltem Data Changed)

Figure 122. PlanModule:SetPlanitemData (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-174 04/17/01

3.12.2.10 PlanModule:SetPlanitemName (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can change the name
of a plan item. An AccessDenied exception is returned if the user does not have the right to
change the plan item name. Otherwise, the plan item name is changed and stored in the
database. An event is pushed through the event channel to notify other processes that the
plan item has been changed. User actions are logged to the operations log.

PushEventSupplier OperationsLog

i Planitemimpl TokenManipulator PlanDB

ORB

setName———>

checkAcces:

[no rights]
[no rights] log
AccessDenied

setPlanitemName—————————>}
[Database error]______
CHART2EXxception

push(PlanitemChanged)

log(Plan Name Changed)

Figure 123. PlanModule:SetPlanltemName (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-175 04/17/01

3.12.2.11 PlanModule:SetPlanName (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can set the name of
a Plan. An access denied exception is returned if the user does not have the right to change
the name. Otherwise, the name is changed and the database is updated. An event id pushed
via the CORBA event service to notify others of the new Plan name. The user actions are
logged to the operations log.

% Planimpl TokenManipulator PlanDB PushEventSupplier OperationsLog

ORB

setName———>

checkAcces:

[no rights]

[no rights] log
AccessDenied

etPlanName

[Database error]______
CHART2EXxception

push(Plan Name Changed)

log(Plan Name bhanged;

Figure 124. PlanModule:SetPlanName (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-176 04/17/01

3.12.2.12 PlanModule:Shutdown (Sequence Diagram)

This diagram shows the shutdown sequence of the Plan module. All the Plan objects that
were published in the trader by the PlanFactory and the PlanFactory itself are withdrawn
and destroyed. The event channel is also withdrawn from the trader and destroyed.

o
j< PlanModule PlanFactorylmpl Planimpl Planttemimpl PushEventSupplier

O
>

Application Service

shutdown

deactivate_object(PlanFactorylmpl)

shutdowrr

deactivate_object(Planimpl)

shutdowr

[* for each Plan]
deactivate_object(PlanitemImpl

X

[* for each Planitem]

delete

delete

X

deactivate_object(PusEventSupplier)

delete:

delete- ><
X

ucce:

X
Figure 125. PlanModule:Shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-177 04/17/01

3.13 ResourcesModule

3.13.1 Classes

3.13.1.1 ResourceClasses (Class Diagram)

This diagram shows the classes in the ResourcesModule, an installable service module that
serves objects that implement the Organization and OperationsCenter interfaces.

OperationsCenter

loginUser(UserLoginSession loginSession,
serName name,
slnng password,
ring hostname):AccessToken
\ogouluser(mcessToken token,
UserLoginSession Iongesslon) void
changeUser(AccessToken token,
UserloginSession oldSesslon
UserLoginSession newSession,
— ServiceApplicationModule UserName userName,
Organization string password):AccessToken
getControlledResources():SharedResourceList
getLoginSessions():LoginSessionList
initialize(ServiceApplication app):boolean forceLogout(AccessToken token,
shutdown(ServiceApplication app):boolean UserL oginSession loginSession):void
isUserLoggedin(UserName userName):boolean
getNumLoggedinUsers():long
transferSharedResources(AccessToken token, -
SharedResourceList resources, UserLoginSession
OperationsCenter targetOpCenter):void
verifyUserPassword(UserName userName,

) ring password):boolean
ResourcesModule addResponseParticipant(AccessToken token, . . getOpCenter():OperationsCenter
ResponseParticipant participant) : void getUsemame() UserName
* 1m lication 1 removeResponseParticipant(Access Token token, ping():bo
o _appl ResponseParticipant participant) : void void furceLoguul(AccessTDken token)
ResourcesModule() P bl .
1
1
1
* OperationsCenterlmpl
ServiceApplication *
OperationsCenterlmpl(ORB orb, Database db, CosTrading.Lookup traderLookup)
start ~lookupLoginSession
shutdown removeLoginSession
getORB():0ORB - addLoginSession 1
getPOA(string poaName):POA
getTradingRegister() CcrsTrad\ng.Reg\sler R 1 1 UserManagementDB
getTradingLookup():CosTrading.Look
getEventChannelFactory(): Even(ChannelFac(ory
getDBConnectionManager():DBConnectionManager 1 DBConnectionManager m_db;
getOperationsLog():OperationsLog
getProperties():java.util. Properties CosTrading.Lookup gg:gi‘fe[:
getDefaultProperties();java.util. Properties — Qe‘USEr
registerObject(obj, id, name, type, publish):void of e UsorRoles
registerEventChannel(EventChannel, name):void — 1 gewserPasswurd
getiDGenerator():IdentifierGenerator query b e word
createRole
deleteRole
setRoleFunctionalRights
getRoleFunctionalRights
1 init() createUser
EOAJ"[‘(')() deleteUser
OperationsCenterDB disconnect() AR
- resolve_initial_references() setUserPassword
DBConnectionManager m_db string_o_object() setUserRoles
object_to_string() getUserProfile
O i enterDB(DBCor i db) deleteUserProfile
getOperationsCenters getUserProfileProperties
getOrganizations setUserProfileProperties
et g Getsystambrote
getSystemProfile
getUserFunctionalRights getSystemProfileProperties
setSystemProfileProperties

Figure 126. ResourceClasses (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-178 04/17/01

3.13.1.1.1 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for
object publication and discovery respectively. The CosTrading.Lookup is the interface that
applications use to discover objects that have previously been published.

3.13.1.1.2 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is
used to log users into the system. If the username and password provided to the loginUser
method are valid, the caller is given a token that contains information about the user and the
functional rights of the user. This token is then used to call privileged methods within the
system. Shared resources in the system are either available or under the control of an
OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it
can ensure that the last user does not log out while there are shared resources under its
control. This list of logged in users is also available for monitoring system usage or to force
users to logout for system maintenance.

3.13.1.1.3 OperationsCenterDB (Class)

This class provides a set of API calls to access the Operations Center data from the
database. The API’s provide functionality to add, remove and retrieve Operation Center
data from the database. The connection to the database is acquired from the Database object
that manages all the database connections.

3.13.1.1.4 OperationsCenterlmpl (Class)

This class provides the implementation of the OperationsCenter interface for this module.

It, therefore, provides a concrete implementation of each of the methods in the interface. It
also contains a collection of UserLoginSession objects, one for each user who is currently

logged in.

3.13.1.1.5 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote
procedure call mechanism for inter-process communication. The ORB is the basic
mechanism by which client applications send requests to server applications and receive
responses to those requests from servers.

3.13.1.1.6 Organization (Class)

The Organization interface extends the Uniquelyldentifiable interface and will represent an
organization, that is an administrative body that can control or own resources.

R1B2 Servers Detailed Design Rev. 0 3-179 04/17/01

3.13.1.1.7 Organizationimpl (Class)

This class provides the implementation of the Organization interface for this module. Thus,
it provides a concrete implementation of each of the methods in the interface.

3.13.1.1.8 ResourcesModule (Class)

This module creates, publishes and destroys all objects related to resource management that
are used by the User Management service application.

3.13.1.1.9 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.13.1.1.10 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.13.1.1.11 UserLoginSession (Class)

The UserLoginSession CORBA interface is used to store information about a user that is
logged into the system. This object is served from the GUI and provides a means for the
servers to call back into the GUI process.

3.13.1.1.12 UserManagementDB (Class)

The UserManagementDB Class provides methods used to access and modify User
Managment data in the database. This class uses a Database object to retrieve a connection
to the database for its exclusive use during a method call.

R1B2 Servers Detailed Design Rev. 0 3-180 04/17/01

3.13.2 Sequence Diagrams

3.13.2.1 ResourcesModule:ChangeUser (Sequence Diagram)

A client with the correct functional rights may select to relinquish his/her workstation to
another operator. This typically will happen at shift change. This sequence logs the new
operator in before logging the old operator out, thereby guaranteeing that the shared
resources controlled by the operations center have a responsible operator during the
transition. If this method throws any type of exception, the old user is still logged in and the
new user is not. If this method returns a token, the old user is logged out and the new user is

logged in.
% OperationsCenter UserManagementDB | | OperationsCenterDB OperationsLog
ORB
[—CchangeUser—>
——getUserPassword—>}
[LoginFailure]
log

[<------LoginFailure-—----
Remove the new login ——getUserFunctionalRights——————>
session because the old i
one could not be logged !
off. create

TokenManipulator

Tt L [*for each functional right]
add
1
If the login session [logout failure]
specified is not a valid removelLoginSession
login session for a logged |..__ <—?
in user. “[&-LogoutFailure---

________ e
____________________ removeLo?inSession
Remove theold L™
LoginSessionand || —
storethe newone. | T addLoginSession

s

Token ><

log

Aalat
deleter

Figure 127. ResourcesModule:ChangeUser (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-181 04/17/01

3.13.2.2 ResourcesModule:ForceLogout (Sequence Diagram)

A client with the correct functional rights may force a particular user to logout of the
CHART2 system. This is actually accomplished in two steps. The client would first need to
acquire a UserLoginSession object before calling this method, please refer to the sequence
diagram for the getUserLoginSessions method for details. Once the user has acquired a
UserLoginSession he/she may contact the Operations Center where that UserLoginSession
is being tracked and inform it that the user should be forced to logout. The
OperationsCenter will call the forceLogout method on the specified UserLoginSession after
removing the login session from its internal collection of login sessions. Note that it is
possible for the user to call the forceLogout method directly on the UserLoginSession
without informing the OperationsCenter. This method of forcing a user to logout is also
accepted. If this path is taken, the operations center will contain a reference to a
UserLoginSession that is no longer valid. This possibility is accounted for by pinging the
UserLoginSession objects each time the getNumLoggedInUsers() method is called. Please
refer to that sequence diagram for details.

E OperationsCenterimpl TokenManipulator UserLoginSession OperationsLog
ORB
—forceLogout——=>}

checkAccess

[AccessDenied]
log

[access denied]_:
AccessDenied

: .
IookupLoglnSessmn

forceLogout

create—> TokenManipulator

checkAccess:

[AccessDenied]

. log
S — AccessDenied---mrrmmreseeeeeeed

[<-—--AccessDenied--
Thrown if an error delete———>;
occurs forcing the
user login session to .

>-~-..[LogoutFailure]____ ><
logout < LogoutFailure

; :
removeLoglnSesswn

log

Figure 128. ResourcesModule:ForceLogout (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-182 04/17/01

3.13.2.3 ResourcesModule:GetControlledResources (Sequence Diagram)

A client may request a list of all shared resources that are currently controlled by this
operations center. This would typically happen if the user were looking to transfer
responsibility for some of all of the controlled shared resources from one operations center
to another. The operations center will contact each shared resource manager in the system
and get a list of resources that it is currently controlling. The lists returned by each shared
resource manager will be combined and the entire list of controlled resources will be
returned to the user.

% OperationsCenterimpl CosTrading.Lookup SharedResourceManager
ORB

—getControlledResources—>}

rquery

Get the shared
resource managers
from the trader.

[* for each SharedResourceManager]
getControlledResources

Figure 129. ResourcesModule:GetControlledResources (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-183 04/17/01

3.13.2.4 ResourcesModule:GetLoginSessions (Sequence Diagram)

A client with the correct functional rights may get a list of UserLoginSessions that
represents the list of users who are currently logged in from this operations center.

OperationsLog

(@)
OperationsCenterimpl TokenManipulator
ORB
——getlLoginSessions—>
checkAccess——=>
[AccessDenied]

log

P [access denied]

AccessDenied

log

S list of sessions-—-------

Figure 130. ResourcesModule:GetLoginSessions (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-184

04/17/01

3.13.2.5 ResourcesModule:GetNumLoggedinUsers (Sequence Diagram)

This method allows a client to get the number of users who are currently logged in at this
operations center. This method will be used by the shared resource manager watchdogs to
verify that they do not have shared resources which are under the control of operations
centers with no users logged in. This method will ping each UserLoginSession before
counting it as a valid login session. The ping protects the system from counting login
sessions from GUI’s which have been turned off or disconnected without performing a
proper logout.

} OperationsCenterimpl UserlLoginSession
ORB

—getNumLoggedinUsers—=>

[*for each login session]
ping

[ping fails]
_____ - removelLoginSession

Return number of successfully
pinged user login sessions

Figure 131. ResourcesModule:GetNumLoggedInUsers (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-185 04/17/01

3.13.2.6 ResourcesModule:Initialize (Sequence Diagram)

When the service is started, the service application will call initialize on this module. The
module will create the operations center and organization imlementation objects which are
found in the database, connect them to the ORB and export them in the trading service so
that other applications may locate them.

o

A

| UserManagementResourcesModule | | ServiceApplication

OperationsCenterDB

ORB

| | CosTrading.Register

Service Application

initialize

Please refer to the
OperationsCenterimpl
initialization sequence diagram
for details on the creation of this
object.

getORB:

—getDBConnectionManager—>}

getTradingLookup—>

getOperationsCenters:

OperationsCenterimpl

Each OperationsCenterimpl and
Organizationimpl created will be
connected to the ORB.

Each OperationsCenterimpl and
Organizationimpl will be exported
to the trader.

N getTradingRegister——>}

getOr

ganization:

creater

“| Organizationimpl

connect

Store Offer ID

ucce:

Store the ID of
each object offer so
they may be retracted later.

export

Figure 132. ResourcesModule:Initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-186

04/17/01

3.13.2.7 ResourcesModule:lsUserLoggedin (Sequence Diagram)

This sequence diagram shows the steps taken to determine if a user is currently logged in to

the system.
@)
OperationsCenterimpl UserLoginSession
ORB
isUserLoggedin———=>

. ________[*for each login session] S
getUserName

return true

Figure 133. ResourcesModule:lsUserLoggedIn (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-187 04/17/01

3.13.2.8 ResourcesModule:LoginUser (Sequence Diagram)

An client may login to the system. The system will verify that the user has specified the
correct password by looking in the user database. If the user has specified the correct
password, the system will create a token that contains the user’s functional rights and will
return it to the invoking client. The login session will be stored internally in the operations
center in order to allow the center to respond to calls regarding shared resource control.

} OperationsCenterimpl UserManagementDB TokenManipulator OperationsLog
ORB
loginUser—>
getUserPassword——>
[wrong password]]
log
é__[Wrong_ password] _
LoginFailure ——getUserFunctionalRights—!
createToken
[* for each functional right] S
add
log
addLoginSession
Token

Figure 134. ResourcesModule:LoginUser (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-188 04/17/01

3.13.2.9 ResourcesModule:LogoutUser (Sequence Diagram)

A client may log out of the system. When an operator does this, the system will ping each
user login session it is tracking to verify the actual number of users who are currently
logged in. If the current number of valid login sessions for this operations center is one,
then this user cannot be allowed to logout if this operations center is currently controlling
shared resources. In order to determine if the operations center has controlled resources, the
system will contact all of the shared resource managers. If the operations center has
controlled resources an exception will be thrown, otherwise the user will be logged out.

E OperationsCenterimpl UserLoginSession CosTrading.Lookup SharedResourceManager OperationsLog
ORB
logoutUser—————>

L —f’or’[reach I?gin session]_,

count the number

of login sessions
which are successfully
pinged

i.~1 Find all shared AN
[Invalid login session resource managers

S or Couldn't be pinged]-—---1
LogoutFailure

[if login session count == 1]
query

[* for each SharedResourceManager]
hasControlledResources

[last user &&
[<-——has Controlled Resources}——-
HasControlledResources

log

) .
rem oveLo?mSessmn

Figure 135. ResourcesModule:LogoutUser (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-189 04/17/01

3.13.2.10 ResourcesModule:OperationsCenterimplinitialization (Sequence Diagram)

This sequence shows the details of constructing an operations center implementation object.
An operations center is responsible for tracking the list of currently logged in users. When
the service is shutdown it will store the list in the database. When the service is restarted it
will get this list of login sessions from the database. Because the service may have been
down for an extended period, the login sessions may no longer be valid due to users logging
out or shutting down their client machines. Thus, each login session object will be pinged to
see if it is still active. If it is, the operations center will add it to the list of current sessions
otherwise it will not.

£

ServiceApplicationModule

O
70
{os)

OperationsCenterimpl OperationsCenterDB UserlLoginSession

create———>

____________________ ———getLoginSessions
Atshutdown eachlogin L | e

session was stored in the

database. Now we will reconstruct F———————string_to_object
the login session reference and g -
ping it to make sure it is still running. Creates a

Ifitis, it will be added to the list of UserLoginSession
current logins otherwise it will be reference. in
discarded. ping

[if ping successful]
addLoginSession

Figure 136. ResourcesModule:OperationsCenterimplinitialization
(Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-190 04/17/01

3.13.2.11 ResourcesModule:Shutdown (Sequence Diagram)

When the service application calls the shutdown method on this module, the module will
withdraw all exported offers from the trader, disconnect any objects that it is currently
serving from the ORB and destroy them. The operations center will also store the current
list of UserLoginSession references in the database. This will allow the login sessions to be
reconstructed at startup.

£

Service ication

Userl ourcesModule ServiceApplication CosTrading.Register OperationsCenterimpl

o

OperationsCenterDB || Organizationimpl

| = |

hutdown

Withdraws all [;

offers made at ‘ withdray

getTradingRegister———>

startup.

getORB:

delete;

delete ><

object_to_string:

—storeLoginSessions—>

Persist each of the
currently stored
UserLoginSessions. On
startup we will reconstruct
them and ping to ensure
they are still valid.

Figure 137. ResourcesModule:Shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-191 04/17/01

3.13.2.12

ResourcesModule:TransferSharedResources (Sequence Diagram)

A client with the correct functional rights may transfer the control of shared resources from
this operations center to another. The system will verify that there are users logged in at the
target operations center and will then transfer control of the shared resources if there are.

X

OperationsCenterimpl

TokenManipulator

OperationsCenter

SharedResource

OperationsLog

ORB

[—transferSharedResources—>

——checkAccess

[Acce:

[access denied]_._________:

. . AccessDenied
Thrown if no login
sessions are active
gteltqr:grtarget operations g;::.h[numLoggedanSers <1]__.
InvalidOperationsCenter

sDenied]

getNumLoggedinUsers

"] Invoked on the

getlDs

getName:

Do this for each shared A
resource passed. i

QetControIIingOpCemer

target operations
center.

[if contrblling op center is this 6p center]

setControllingOpCenter

_| Operations Center

Pass the ID & Name
of the target i

i

|
log

Figure 138. ResourcesModule:TransferSharedResources (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-192

04/17/01

3.14 SHAZAMControl

3.14.1 Classes

3.14.1.1 SHAZAMControl (Class Diagram)

The SHAZAMControlModule serves a SHAZAMFactory object and SHAZAM objects.
The class diagram below shows the classes used to implement these system interfaces.
Details are only shown for classes in the SHAZAMControlModule package.

SHAZAMControlModuleProperties ‘ Sen ‘ ‘ Ser ‘
JAN 1
getSHAZAMRefreshTimerMins():long |
getSharedResMonintSecs():long
getSHAZAMFactorylD():byte[]
1
Uniquelyldentifiable
1
1
SHAZAMContr
1 ‘ SharedResource ‘ HARMessageNotifier ‘ CommEnabled ‘ Geolocatable
1 1 1

I I I 1

1

2 1
java.util. TimerTask .‘ java.util. Timer

T

RefreshSHAZAMTimerTask

1

SHAZAMControlDB

DBConnectionManager m_db

getSHAZAMSs():SHAZAMImpl[]
updateStatus():void
updateConfiguration():void

SHAZAM

SHAZAMFactorylmpl m_factory .

1| SHAZAMConfiguration

SharedResourceCheckTimerTask

PushEventSupplier

SHAZAMFactorylmpl m_factory

SharedResourceManager

1| sHAzZAMStatus

1 1 1, 1, 1
SHAZAMFactorylmpl SHAZAMImpl
SHAZAMFactor
4 -1 java.lang.Vector m_SHAZAMList long m_lastRefresh CommandQueue
1 * | TrafficEvent m_trafficEvent 1
SHAZAMFactoryimpl(bytef] id, &
ServiceApplication serviceApp, SHAZAMImpl(SHAZAMFactorylmpl, 1
SHAZAMControlDB db, SHAZAMControlDB,
1 1 PushEventSupplier evtRes, PushEventSupplier):
VikingRc2aSHAZAM PushEventSupplier etSHAZAM, SHAZAMImpl
RecurringTimer timer, refresh():void
long resMonintSecs)
removeSHAZAM():void
doSharedResources Check():void
doRefreshShazamsCheck():void *

QueueableCommand

SHAZAMActivateCmd

SHAZAMDeactivateCmd

SHAZAMPutOnlineCmd

SHAZAMTakeOfflineCmd

SHAZAMSetConfigurationCmd

SHAZAMPutinMaintModeCmd

boolean m_maintMode
byte[] m_token
SHAZAMImpl m_shazam

boolean m_maintMode
byte[] m_token

byte[] m_token
SHAZAMImpl m_shazam
CommandStatus m_status

byte[] m_token
SHAZAMImpl m_shazam
CommandStatus m_status

byte[] m_token
SHAZAMImpl m

shazam
CommandStatus m_status

byte[l m_token
SHAZAMImpl m_shazam
CommandStatus m_status

SHAZAMImpl m_shazam
C m_status

CommandStatus m_status
T m

SHAZAMConfiguration m_config

SHAZAMRefreshCmd

SHAZAMImpl m_shazam

Figure 139. SHAZAMControl (Class Diagram)

R1B2 Servers Detailed Design Rev. 0

3-193

3.14.1.1.1 CommandQueue (Class)

The CommandQueue class provides a queue for QueuableCommand objects. The
CommandQueue has a thread that it uses to process each QueuableCommand in a first in
first out order. As each command object is pulled off the queue by the CommandQueue’s
thread, the command object’s execute method is called, at which time the command
performs its intended task.

3.14.1.1.2 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.14.1.1.3 Geolocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

3.14.1.1.4 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that
can be used to notify the traveler to tune in to a radio station to hear a traffic message being
broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device
to better determine if activation of the device is warranted for the message being broadcast
by the HAR. This interface can be implemented by SHAZAMSs and by DMS devices that
are allowed to provide a SHAZAM-like message in the absence of any more useful
messages to display.

3.14.1.1.5 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or
recurring execution.

3.14.1.1.6 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one
or more times.

R1B2 Servers Detailed Design Rev. 0 3-194 04/17/01

3.14.1.1.7 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a
CommandQueue for asynchronous execution. Derived classes implement the execute
method to specify the actions taken by the command when it is executed. This interface
must be implemented by any device command in order that it may be queued on a
CommandQueue. The CommandQueue driver calls the execute method to execute a
command in the queue and a call to the interuppted method is made when a
CommandQueue is shut down.

3.14.1.1.8 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

3.14.1.1.9 RefreshSHAZAMTimerTask (Class)

This class is a task to be invoked periodically by a timer. When invoked, this class will call
a method in the SHAZAMFactorylmpl to have it tell each SHAZAM to refresh if
necessary.

3.14.1.1.10 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.14.1.1.11 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.14.1.1.12 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

R1B2 Servers Detailed Design Rev. 0 3-195 04/17/01

3.14.1.1.13 SharedResourceCheckTimerTask (Class)

This class is invoked periodically by a timer. When executed this class calls a method in the
SHAZAMFactorylmpl to have it check each shared resource and make sure if it has a
controlling op center that the controlling op center has at least one user logged in.

3.14.1.1.14 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.14.1.1.15 SHAZAM (Class)

This class is used to represent a SHAZAM field device. This class uses a helper class to
perform the model specific protocol for device command and control.

3.14.1.1.16 SHAZAMActivateCmd (Class)

This class contains data needed to activate a SHAZAM asynchronously via the
CommandQueue. A flag is used to determine if the activation is being performed directly
on the device while it is in maintenance mode or if the activation is being processed as an
extension of setting a HAR message in response to a traffic event.

3.14.1.1.17 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device.

3.14.1.1.18 SHAZAMControlDB (Class)

This class provides access to database functionality needed to support the SHAZAM and
SHAZAMPFactory classes. This class provides a high level interface to allow for persistence
and depersistance of SHAZAM and SHAZAMPFactory objects.

3.14.1.1.19 SHAZAMControlModule (Class)

This class is a service module that provides control of SHAZAM devices. Upon
initialization the module initializes a SHAZAMPFactory which contains SHAZAM objects
that have been previously added to the system. These objects are accessed via the CORBA
ORB and manipulated directly from client applications. The module also creates support
objects that are used by the SHAZAM (and SHAZAMFactory) objects to perform their
processing, such as a database connection, event channels, and a periodic timer used to
allow the objects to perform timer based processing.

R1B2 Servers Detailed Design Rev. 0 3-196 04/17/01

3.14.1.1.20 SHAZAMControlModuleProperties (Class)

This class is used to access SHAZAMControlModule specific settings in the application
service’s properties file.

3.14.1.1.21 SHAZAMDeactivateCmd (Class)

This class contains data needed to deactivate a SHAZAM asynchronously via the
CommandQueue. A flag is used to determine if the deactivation is being performed directly
on the device while it is in maintenance mode or if the deactivation is being processed as an
extension of setting a HAR message in response to a traffic event.

3.14.1.1.22 SHAZAMFactory (Class)

This CORBA interface allows new SHAZAM objects to be added to the system.

3.14.1.1.23 SHAZAMFactorylmpl (Class)

This class provides the ability to add new SHAZAM objects to the system. When
SHAZAMs are added, they are persisted to the database so this object can depersist them
upon startup. This class also provides a removeSHAZAM method that allows a SHAZAM
to remove itself from the system when directed.

3.14.1.1.24 SHAZAMImpl (Class)

This class implements the SHAZAM interface and allows for control of a SHAZAM field
device. The SHAZAMImpl makes use of the VikingRc2aSHAZAM object to perform field
communications to the device. All field communications are done asynchronously via the
command queue thread. The progress of an asynchronous command is provided to the
caller via a CommandStatus object.

3.14.1.1.25 SHAZAMPutInMaintModeCmd (Class)

This command contains data needed to put a SHAZAM device in maintenance mode
asynchronously via the CommandQueue. When executed this class calls back into the
SHAZAMImpl object to perform the “put in maintenance mode”

3.14.1.1.26 SHAZAMPutOnlineCmd (Class)

This command contains data needed to put a SHAZAM device online asynchronously via
the CommandQueue. When executed this class calls back into the SHAZAMImpl object to
perform the “put online” processing.

3.14.1.1.27 SHAZAMRefreshCmd (Class)

This class is a command object used to invoke the SHAZAM refresh processing
asynchronously from the command queue.

R1B2 Servers Detailed Design Rev. 0 3-197 04/17/01

3.14.1.1.28 SHAZAMSetConfigurationCmd (Class)

This command contains data needed to put set the SHAZAM configuration asynchronously
via the CommandQueue. When executed this class calls back into the SHAZAMImpl object
to perform the “set configuration” processing. The SHAZAM device model currently in use
does not contain any configuration settings, however this command is still processed
asynchronously for consistency.

3.14.1.1.29 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device.

3.14.1.1.30 SHAZAMTakeOfflineCmd (Class)

This command contains data needed to take a SHAZAM device offline asynchronously via
the CommandQueue. When executed this class calls back into the SHAZAMImpl object to
perform the “take offline” processing.

3.14.1.1.31 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure unigueness.

3.14.1.1.32 VikingRc2aSHAZAM (Class)

This class provides the device specific prototcol for controlling a SHAZAM device. This
class uses a TelephonyManager to acquire a telephony port for processing. It then uses the
telephony port to connect to the SHAZAM and send DTMF to activate or deactivate the
beacons via the Viking controller.

This class is responsible for intelligence in acquiring a port, such as seeking out an alternate
TelephonyManager when necessary.

R1B2 Servers Detailed Design Rev. 0 3-198 04/17/01

3.14.2 Sequence Diagrams

3.14.2.1 SHAZAMControlModule:activateSHAZAM (Sequence Diagram)

A SHAZAM can be activated by a HAR when its message is set, or it can be activated
directly when in maintenance mode. In either case, the processing done is nearly identical.
When being activated by a HAR as part of the HAR message activation, the
activateHARNOotice method from the HARMessageNotifier interface is called. When being
activated directly, the SHAZAM’s setBeaconsOn method is called.

Regardless of the API called, the SHAZAM creates a SHAZAMActivateCmd object and
places it on its command queue for asynchronous processing. A flag in the
SHAZAMACctivateCmd object specifies the activation was requested from maintenance
mode or online mode. When the queue executes the command, the activatelmpl method
checks the flags in the command object to determine any processing that is specific to the
mode in which the activation request occurred. Common processing includes calling the
VikingRc2aSHAZAM object to perform communications and command the SHAZAM and
utilizing the caller’s command status object to inform the caller of the command’s progress.
Specific processing that requires checking the mode of the request includes checking that
the SHAZAM is in the same mode as when the command was queued, and updating the
TrafficEvent’s history if the activation occurred in online mode.

ORB SHAZAMImpl

activateHARNotice

I\AklanCZaSHAZAMI | T I ISHAZANﬁoerIDB

CommandStatus | PushEventSupplier

CommandQueue I

R
setBeaconsOn
[improper rights].
[improper rights] completed
AccessDenied

[activateHARNotice and not or)line

setBeaconsOn and not in maint }node]
[activateHARNotice and not online completex
OR

[oreat SHAZAMACtivateCmd

update

activatelmpl is used - CommandQueue
for processing invoked . " | executes commands
via a HAR or when asynchronously.
activating a HAR in execute—=

maintenance mode.

[maint mode command and not in maint mode].
{ completed |

setBeaconsOn and not in maint mode]
CHART2Exception

[not maint mod

e and not online]
completed |

| Refer to FMS sequence diagram
_.+7| for details.

-activate:

[not maint mode
addLogEntry

[success]
updateStatus

success]
push(SHAZAMStatusChanged)

Figure 140. SHAZAMControlModule:activateSHAZAM (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-199 04/17/01

3.14.2.2 SHAZAMControlModule:createSHAZAM (Sequence Diagram)

A user with the proper functional rights can add a SHAZAM to the system. The SHAZAM
configuration data is added to the database, a SHAZAMImpl object is created, and the
object is connected to the POA, making it ready for calls from clients. The
ServiceApplication is called to register the object with the trader and an event is pushed to
allow GUIs to show this SHAZAM as an available object in the system. The SHAZAM is
added in the offline state and no field communications are necessary.

ORB SHAZAMFactorylmpl SHAZAMControlDB POA ServiceApplication PushEventSupplier

createSHAZAM————>

R [improper rights] ________.
AccessDenied
insertSHAZAM
[failure] .
i .1 SHAZAM is created
CHART2Excepton | in OFELINE mode. 5
create SHAZAMImpI

activate_object

registerObject

push(SHAZAMAdded)

Figure 141. SHAZAMControlModule:createSHAZAM (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-200 04/17/01

3.14.2.3 SHAZAMControlModule:deactivateSHAZAM (Sequence Diagram)

A SHAZAM can be deactivated by a HAR when its message is set, or it can be deactivated
directly when in maintenance mode. In either case, the processing done is nearly identical.
When being deactivated by a HAR as part of the HAR message activation/blank processing,
the deactivateHARNotice method from the HARMessageNotifier interface is called. When
being deactivated directly, the SHAZAM’s setBeaconsOff method is called.

Regardless of the API called, the SHAZAM creates a SHAZAMDeactivateCmd object and
places it on its command queue for asynchronous processing. A flag in the
SHAZAMDeactivateCmd object specifies the deactivation was requested from maintenance
mode or online mode. When the queue executes the command, the deactivatelmpl method
checks the flags in the command object to determine any processing that is specific to the
mode in which the deactivation request occurred. Common processing includes calling the
VikingRc2aSHAZAM object to perform communications and command the SHAZAM and
utilizing the caller’s command status object to inform the caller of the command’s progress.
Specific processing that requires checking the mode of the request includes checking that
the SHAZAM is in the same mode as when the command was queued, and updating the
TrafficEvent’s history if the deactivation occurred in online mode.

SHAZAMImpl CommandQueueI CommandStatus IwkianczaSHAZAMII T I ISHAZAMCc\ntrDIDB IPushEvemSquliev

deactivateHARNotice

setBeaconsOff

[improper rights]
L _[improperrights] completed

AccessDenied
[deactivateHARNotice AND not online

SetBeaconsOTf AND not maint mode]
completed

[°re3® ™ sHAzAMDectivateCmd

update

deactivatelmpl is used - CommandQueue

for processing invoked 5 | executes commands
via a HAR or when asynchronously.
deactivating a HAR in execute——

maintenance mode.

[maint mode command and not in maint mode]
| completed |

[deactivateHARNotice AND not online
OR

setBeaconsOff AND not maint mode]
CHART2Exception

[not maint mod

le and not online]
completed i

| Refer to FMS sequence diagram
47| for details.

[TrafficEvent exists from prior
addLogEntry

success|
updateStatus

push(SHAZAMStatus Changed);

Figure 142. SHAZAMControlModule:deactivateSHAZAM (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-201 04/17/01

3.14.2.4 SHAZAMControlModule:initialize (Sequence Diagram)

When the SHAZAMControlModule is included in a ServiceApplication, the service
application calls the SHAZAMControlModule’s initialize method when the service is

started. The SHAZAMControlModule creates supporting objects such as the

SHAZAMControlModuleDB for database access and PushEventSupplier objects for
resource management events and SHAZAM control events. A SHAZAMFactorylmpl

object is created which depersists all SHAZAMs that have been previously added to the
system. Each SHAZAM is connected to the ORB and registered with the service
application to have the object published in the trader. A Timer is used to call the

SHAZAMFactory to perform timer based processing.

X

Service

sz | |

Application

registerTrader Types
o COSETT

F—getD

The DBConnectionManager .
is needed to create the T
SHAZAMControlDB object.

Event

it channels

are needed
for SHAZAMControl events and
generic resource management
events

JSH WC perties
1 PushEventSupplier
’I_:I
“FgetDBConnectionManager=>
.| sHAZamcontrolDs
jg A—
’I SHAZAMFactoryimpl
-getSHAZAMObjects-
| sHazammpl
g —
L create—>] VikingRc2aSHAZAM
[+for each SHAZAM in DB] create—] VikingRe2aSHAZAM

r

[*for each SHAZAM]

I

registerObject———>!

java.util. Timer

| sharedResourceCheckTimerTask

uuuuuuu

RefreshSHAZAMTimerTask

Figure 143. SHAZAMControlModule:initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-202

04/17/01

3.14.2.5 SHAZAMControlModule:putinMaintenanceMode (Sequence Diagram)

A user with proper functional rights can put a SHAZAM in maintenance mode if it is not
already in maintenance mode. A command object is created and placed on the command
queue to execute the command asynchronously. When executed, the command calls back
into the SHAZAMImpl object that calls the VikingRc2aSHAZAM object to command the
device to its inactive state. Regardless of the ability to command the device, the
SHAZAMImpl changes to the maintenance mode state, pesists its state in the database, and
pushes an event to allow the GUI to update its display for the SHAZAM.

X

ORB SHAZAMImpl CommandQueue CommandStatus VikingRc2aSHAZAM | T | | SHAZAMControlDB PushEventSupplier
|——putinMaintenanceMode—>{
b [improper rights]
E— [improper rights] _____ completed
AccessDenied
[already in mode]
completed
<[aJready in maintenance mode]
CHART2Exception
[op ctr not equal caller's and no override]
[op ctr not equal caller's completed
[S -and no override]—--
ResourceControlConflict
[create—>| gpiazaMPutinMainiModeCmd
update
1 CommandQueue
executes commands
asynchronously.
execute
i<—putinMaintModelmpt—
[already in mode]
i completed
[op ctr }ot equal caller's and no override]. R
.| Refer to FMS
completed sequence diagram
for details.
[TrafficEvent exists from previous activation]
addLogEntry i
push(SHAZAMStatusChanged)

Figure 144. SHAZAMControlModule:putinMaintenanceMode (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-203 04/17/01

3.14.2.6 SHAZAMControlModule:putOnline (Sequence Diagram)

A user with proper functional rights can put a SHAZAM online if it is not already online. A
command object is created and placed on the command queue to execute the command
asynchronously. When executed, the command calls back into the SHAZAMImpl object
that calls the VikingRc2aSHAZAM object to command the device to a known state (not
active). If able to deactivate the device, the SHAZAMImpl changes to the online state,
pesists its state in the database, and pushes an event to allow the GUI to update its display

for the SHAZAM.
i SHAZAMImpl | CommandQueue | | CommandStatus | | VikingRc2aSHAZAM | | SHAZAMControlDB | | PushEvenlSugglierl
ORB

putOnline————>

[improper rights]

| _____[improper rights] _____ completed
AccessDenied
[already online]
| ___[alreadyonline] completed
CHART2Exception

jcreate ;l SHAZAMPUORlineCmd I

update

-addCommand

| CommandQueue
executes commands
asynchronously.

execute

putOnlinelmpl

[already online]
completed

1 Refer to FMS
sequence diagram
deactivate for details.

[success]
updateStatus

[success]
push(SHAZAMStatusChanged)

completed

Figure 145. SHAZAMControlModule:putOnline (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-204 04/17/01

3.14.2.7 SHAZAMControlModule:remove (Sequence Diagram)

A user with the proper functional rights can remove an offline SHAZAM from the system.
The SHAZAM object is withdrawn from the trader and disconnected from the ORB. The
data for the SHAZAM is deleted from the database and a message is pushed to allow the

GUIs to remove the SHAZAM.

E SHAZAMImpl SHAZAMFactoryimpl | | CosTrading.Register POA SHAZAMControlDB || PushEventSupplier
ORB
remove—————>}
] [improper rights] _____
AccessDenied
[not offline]
CHART2EXxception
——removeSHAZAM—>}
withdraw————>
deactivate_object
deleteSHAZAM
push(SHAZAMRemoved)

Figure 146. SHAZAMControlModule:remove (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-205

04/17/01

3.14.2.8 SHAZAMControlModule:ResetSHAZAMtoLastKnownState (Sequence Diagram)

Because SHAZAMs do not issue any response to commands and these devices have been
found to be less than reliable in the past, a process is in place to periodically command the
device to its last known status. A Timer notifies the SHAZAMRefreshTimerTask when the
task’s scheduled interval expires. The task calls the SHAZAMFactorylmpl which calls each
SHAZAM to have them do a refresh if necessary. Each SHAZAM determines if a refresh is
necessary based on its refresh interval. Refreshes are only done when the SHAZAM is in an
online state. If the SHAZAM determines a refresh is warranted it adds a refresh commandto
its command queue to be executed asynchronously. When the command is executed, it
makes sure the refresh is still necessary and the appropriate command (activate or
deactivate) is sent to the device via the VikingRc2aSHAZAM class. A low priority is given
to the command in terms of communications resource usage. (Refer to the FMS detailed
design for more information on communications resources and priorities)

E | RefreshSHAZAMTimerTaskl

| SHAZAMFactorylmpl |

java.util.Timer

un——————>4

——doRefreshSHAZAMS Check:

[*for each SHAZAM]

=== [not onling]---e

ic..........[device commanded within ______

the threshold]

| SHAZAMImpl I

| CommandQueue |

| VikingRc2aSHAZAM

| create SHAZAMRefreshCmd

addComman:

Figure 147. SHAZAMControlModule:ResetSHAZAMtoLastKnownState
(Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-206

refreshimpt

f==[not online}--->1

_.[device commanded___
within the threshold]

CommandQueue B

4 executes commands
4" | asynchronously.

04/17/01

3.14.2.9 SHAZAMControlModule:setConfiguration (Sequence Diagram)

A user with appropriate functional rights can set the configuration of a SHAZAM if it is in
maintenance mode. The Rc2aSHAZAM itself does not have any configurable settings, so
no field communications are necessary. The configuration is stored in memory and
persisted to the database and an event is pushed to notify others of the changes. Note that
although this command does not currently require field communications, the asynchronous
command pattern is used for consistency with other device commands and also to allow the
code to easily adapt to a device type that supports configurable settings.

ORB SHAZAMImpl CommandQueue CommandStatus SHAZAMControlDB PushEventSupplier

setConfiguration

[improper rights]
S [improper rights]_________ completed
AccessDenied

[not in maint mode]
[not in maint mode]________ completed
CHART2Exception

create

SHAZAMSetConfigurationCmd

update

addCommand

execute

etConfigurationimpl

update

updateConfiguration

push(SHAZAMConfigurationChanged)

completed

Figure 148. SHAZAMControlModule:setConfiguration (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-207 04/17/01

3.14.2.10

ServiceAf

R1B2

SHAZAMControlModule:shutdown (Sequence Diagram)

When a service application containing the SHAZAMControlModule is shutdown, it calls
the shutdown method. The SHAZAMControlModule cleans up its resources, which include
its periodic timer and PushEventConsumers.

SHAZAMC: |

java.util. Timer

SHAZAMFactorylmpl

java.lang.Vector ServiceApplication

>

PushEventSupplier
(SHAZAMControl)

PushEventSupplier
(Resource

pplication

X

hutdowrr

[*for each SHAZAM]

lisconnectPushConsumer

tPushConsumer

Figure 149. SHAZAMControlModule:shutdown (Sequence Diagram)

Servers Detailed Design Rev. 0

3-208

04/17/01

3.14.2.11

SHAZAMControlModule:takeOffline (Sequence Diagram)

A user with proper functional rights can take a SHAZAM offline if it is not already offline.
A command object is created and placed on the command queue to execute the command
asynchronously. When executed, the command calls back into the SHAZAMImpl object

that calls the VikingRc2aSHAZAM object to command the device to its inactive state.

Regardless of the ability to command the device, the SHAZAMImpl changes to the offline
state, pesists its state in the database, and pushes an event to allow the GUI to update its

display for the SHAZAM.
i SHAZAMImp| CommandQueue I
[improper rights]
E— [improper rights]_______ completed
AccessDenied
[already offline]
E— [already offline] ________ completed

CommandStatus

| VikingRc2aSHAZAM I

PushEventSupplier

CHART2Exception

[op ctr not equal caller's
[-and no override]--
ResourceControlConflict

[op ctr not equal caller's and no overrid
completed

[creat SHAZAT akeOffineCmd

]

[op ctr

ot equal caller's and no overrid
completed

update
] CommandQueue
execute: = executes commands
asynchronously.
takeOfflinelmp-——-—
[already offline]
completed

]

i~ Referto FMS
sequence diagram
for details.

ists from previous activation]
addLogEntry i

Figure 150. SHAZAMControlModule:takeOffline (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-209

push(SHAZAMStatusChanged)

04/17/01

3.15 SHAZAMUtility

3.15.1 Classes

3.15.1.1 SHAZAMUtility (Class Diagram)

This diagram shows SHAZAM related classes that are shared between the server and the
GUL.

SHAZAMStatus SHAZAMConfiguration
boolean m_activated string m_name;
CommunicationMode m_commMode string m_location
Identifier m_controllingOpCtriD string m_phoneNumber
string m_controllingOpCtrName Direction m_direction
NetworkConnectionSite m_networkConnectionSite HAR m_har
long m_refreshintervalMins
factory createSHAZAMStatus(): SHAZAMStatus
A factory createSHAZAMConfiguration(): SHAZAMConfiguration
SHAZAMStatusimpl SHAZAMConfigurationimpl

Figure 151. SHAZAMUtility (Class Diagram)

3.15.1.1.1 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device.

3.15.1.1.2 SHAZAMConfigurationlmpl (Class)

This class provides an implementation of the SHAZAMConfiguration valuetype as defined
in the IDL. This class provides access to values relating to the configuration of a
SHAZAM.

3.15.1.1.3 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device.

3.15.1.1.4 SHAZAMStatusimpl (Class)

This class implements the SHAZAMStatus valuetype as defined in the IDL. It provides
access to values relating to the current status of a SHAZAM.

R1B2 Servers Detailed Design Rev. 0 3-210 04/17/01

3.16 Systeminterfaces
This section shows interfaces to the system that are defined in IDL.

3.16.1 Classes

3.16.1.1 AudioCommon (Class Diagram)

This class diagram shows the classes relating to Audio.

AudioEncoding TTSPriority Uniquelyldentifiable TextEmbeddedTag
PCM_SIGNED USER string MorningAfternoonEvening
PCM_UNSIGNED SYSTEM
A_LAW getiD()
U_LAW getName()
1 | replaces
1
1
* 1 1 1
AudioDataFormat TTSConverter
AudioEncoding m_encoding;
float m_sampleRate;
long m_sampleSizelnBits; 1 * | getSupportedFormats(void):AudioDataFormatList;
long m_channels; convertTextToSpeech(string text,
long m_frameSize; AudioDataFormat format,
float m_frameRate; long maxChunkSize,
boolean m_bigEndian; TTSPriority priority, 1 *
AudioPushConsumer consumer)
getVoiceLength(string text,
AudioDataFormat format,
1 AudioPushConsumer consumer)

AudioPushConsumer

*

AudioData

AudioClipStreamer

pushAudio(AudioData data):void
pushAudioProperties(AudioDataFormat format,
long seconds,
long size):void
pushFailure(string errMsg):void

*

streamAudioClip(ldentifier id,

long maxChunkSize, 1

AudioPushConsumer consumer):void

UnsupportedAudioFormat

AudioDataFormatList supportedFormats;

AudioClipNotFound

string reason;

Figure 152. AudioCommon (Class Diagram)

R1B2 Servers Detailed Design Rev. 0

3-211

04/17/01

3.16.1.1.1 AudioClipNotFound (Class)

This exception is thrown by an AudioClipStreamer if asked to push an audio clip which it
cannot find.

3.16.1.1.2 AudioClipStreamer (Class)

This interface is implemented by objects that can push a previously stored audio clip given
its ID. The audio data is pushed via the AudioPushConsumer supplied by the user of this
interface.

3.16.1.1.3 AudioData (Class)

This typedef is a sequence of bytes that contain audio data. This data is used in conjunction
with AudioDataFormat to decode the data into voice.

3.16.1.1.4 AudioDataFormat (Class)

This struct specifies the format of audio data.

3.16.1.1.5 AudioEncoding (Class)

This enum defines the supported types of encoding for audio data.

3.16.1.1.6 AudioPushConsumer (Class)

This interface is implemented by objects that may need to receive audio data using the push
model, where the server pushes the data to the consumer. One call to pushAudioProperties()
will always precede any calls to pushAudio().

3.16.1.1.7 TextEmbeddedTag (Class)

This interface defines constants for tags that may be embedded in text that is passed to the
TTSConverter. The TTSConverter replaces the tags it finds in text prior to converting the
text to speech. The MorningAfternoonEvening tag is replaced with the text ‘morning’ when
the conversion takes place between 00:00 and 11:59, “afternoon’ from 12:00 through 16:59,
and ‘evening’ from 17:00 to 23:59.

3.16.1.1.8 TTSConverter (Class)

This interface represents the Text to Speech converter object that allows text to be passed in
and speech to be returned.

3.16.1.1.9 TTSPriority (Class)

This enum defines the types of priorities that can be used when asking the TTSConverter to
convert text to speech.

R1B2 Servers Detailed Design Rev. 0 3-212 04/17/01

3.16.1.1.10 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.16.1.1.11 UnsupportedAudioFormat (Class)

This exception is thrown when a specific AudioDataFormat is requested from an object that
does not support the given format.

R1B2 Servers Detailed Design Rev. 0 3-213 04/17/01

3.16.1.2 CommLogManagement (Class Diagram)

This Class Diagram shows the classes used for passing information between processes to
enable creating, pushing, viewing, and searching Communications Log entries.

Loglterator LogEntryData LogEntryList
CommLogEventType 9 LogEntryDatalist 9 y 9 v
long timeOfLastUse String entryText sequence LogEntr
LogEntryAdded sequence LogEntryData | 1 * | Identifier trafficEventiD q g=nry
getMoreEntries(long maxCount) : LogEntryList
destroy():void
1
*
1 *
LogFilter CommLog LogEntry
TimeStamp m_startDate 1 1 TimeStamp m_timestamp
TimeStamp m_endDate 1 * Identifier m_eventiD
Identifier eventiD getEntries(AccessToken token, LogFilter filter, string m_text
string m_opCenterName long maxCount, LogEntryList entries) : Loglterator string m_author
string m_containsText addEntries(AccessToken token, LogEntryDatalList logEntries) : void string m_opCenterName
factory createLogFilter() : LogFilter equals() : boolean
factory createLogEntry() : LogEntry
hashCode() : int
matchesFilter(LogFilter filter) : boolean

Figure 153. CommLogManagement (Class Diagram)

3.16.1.2.1 CommLog (Class)

This class manages log entries. These can be general Communications Log entries or
specific log entries for a specific Traffic Event. This class is the primary interface for the
CommLog service. It is used to persist log entries in the CHART Il system and retrieve
them for review. Log entries can be created directly by users or indirectly as a result of
manipulating Traffic Events.

3.16.1.2.2 CommLogEventType (Class)

This enumeration lists the possible events that the CommsLog service may push via the
CORBA event service. At present, only one event is defined, the addition of a new
LogEntry to the database.

3.16.1.2.3 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general
Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic
Event actions (opening, closing, etc.) are logged in the Communications Log as well as in
the history of the specific Traffic Event.

R1B2 Servers Detailed Design Rev. 0 3-214 04/17/01

3.16.1.2.4 LogEntryData (Class)

LogEntryData is a collection of data required to create one Log Entry, consisting of text
(the body of the event) and an ID that refers to a Traffic Event, if appropriate.

3.16.1.2.5 LogEntryDatalist (Class)

The LogEntryDataL.ist is simply a sequence of LogEntryData objects, each of which
contain the data needed to create one Log Entry. Normally each LogEntryDataL.ist will
contain only one LogEntryData object, but if the CommLog service is unavailable for a
time, it is possible that multiple LogEntryData objects may be queued up for insertion into
the database.

3.16.1.2.6 LogEntryList (Class)

The LogEntryList is simply a sequence of LogEntry instances returned to a requesting
process in one clump. (Some requests return so much data that data is returned in clumps.
The initial request returns a Loglterator from which additional LogEntryL.ist sequences can
be requested, in order to complete the entire query.

3.16.1.2.7 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the
Communications Log. The caller would create an object of this type specifying the criteria
that each log entry must match in order to be returned.

3.16.1.2.8 Loglterator (Class)

This class represents an iterator to iterate through a collection of log entries. If a retrieval
request results in more data than is reasonable to transmit all at once, one clump of entries
is returned at first, together with a Loglterator from which additional data can be requested,
repeatedly, until all entries are returned or the user cancels the operation.

R1B2 Servers Detailed Design Rev. 0 3-215 04/17/01

3.16.1.3 Common (Class Diagram)

This class diagram shows classes used by multiple modules.

Uniquelyldentifiable

GeolLocatable

NetworkConnectionSite

getiD() String getLocationDesc()
getName()
CommandStatus Service

update(String status):void
completed(String final_status)

CHART2Exception

string reason
string debug

AccessDenied

string reason
string requiredRights

ping():void

getName():string;
getNetConnectionSite():string;

oneway shutdown(AccessToken token):void

SpecifiedObjectNotFound

string reason

UserName

TimeStamp

Password

Direction

NORTH
SOUTH

EAST

WEST
INNER_LOOP
OUTER_LOOP

UnsupportedOperation InvalidState

string reason string reason

Figure 154. Common (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-216

04/17/01

3.16.1.3.1 AccessDenied (Class)

This class represents an access denied, or “no rights” failure.

3.16.1.3.2 CHARTZ2Exception (Class)

Generic exception class for the CHART2 system. This class can be used for throwing very
generic exceptions that require no special processing by the client. It supports a reason
string that may be shown to any user and a debug string that will contain detailed
information useful in determining the cause of the problem.

3.16.1.3.3 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of
the progress of an asynchronous operation. This is typically used by a GUI when field
communications are involved to complete a method call, allowing the GUI to show the user
the progress of the operation. The long running operation calls back to the CommandStatus
object periodically as the command is executed and makes a final call to the
CommandStatus when the operation has completed. The final call to the CommandStatus
from the long running operation indicates the success or failure of the command.

3.16.1.3.4 Direction (Class)

This enumeration defines direction of travel.

3.16.1.3.5 Geolocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

3.16.1.3.6 InvalidState (Class)

This exception is thrown when an operation is attempted on an object that is not in a valid
state to perform the operation.

3.16.1.3.7 NetworkConnectionSite (Class)

The NetworkConnectionSite class contains a string that is used to specify where a service is
running. This field is useful for administrators in debugging problems should an object
become “software comm failed”. It is included in the CHART2DMSStatus.

3.16.1.3.8 Password (Class)

Typedef used to define the type of a Password.

R1B2 Servers Detailed Design Rev. 0 3-217 04/17/01

3.16.1.3.9 Service (Class)

This interface is implemented by all services in the system that allow themselves to be
shutdown externally. All implementing classes provide a means to be cleanly shutdown and
can be pinged to detect if they are alive.

3.16.1.3.10 SpecifiedObjectNotFound (Class)

Exception used to indicate that an operation was attempted that involves a secondary object
that cannot be found by the invoked object.

3.16.1.3.11 TimeStamp (Class)
This typedef defines the type of TimeStamp fields.

3.16.1.3.12 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure unigueness.

3.16.1.3.13 UnsupportedOperation (Class)

This exception is used to indicate that an operation is not supported by the object on which
itis called.

3.16.1.3.14 UserName (Class)

This typedef defines the type of UserName fields used in system interfaces.

R1B2 Servers Detailed Design Rev. 0 3-218 04/17/01

3.16.1.4 DeviceManagement (Class Diagram)

This class diagram shows device interfaces that are common among devices.

CommunicationMode

OperationalStatus

ONLINE
OFFLINE
MAINT_MODE

OK
COMM_FAILURE
HARDWARE_FAILURE

CommEnabled

ArbitrationQueue

ArbQueueEntry

takeOffline(AccessToken, CommandStatus):void
putOnline(AccessToken, CommandStatus):void
putinMaintenanceMode(Access Token, CommandStatus):void
getCommMode() :CommunicationMode

addEntry(AccessToken, ArbQueueEntry):void
removeEntry(AccessToken, byte[] traffic EventID):void
eventTypeChanged(AccessToken, TrafficEvent):void;
eventTransferred(AccessToken token,

TrafficEvent trafficEvent,

Identifier opCenterID,

string opCenterName):void;

TrafficEvent m_trafficEvent
byte[] m_trafficEventiD
Message m_message
boolean m_inProgress
boolean m_active

boolean m_deleted
boolean m_updated

CommpFailure DisapprovedMessageContent
string reason; WordList disapprovedWords
string debug; string reason

long errorCode;

Message

validateMessageContent():void;

ArbQueueEntry(TrafficEvent, Message):ArbQueueEntry
getTrafficEvent(): TrafficEvent

getTrafficEventID():byte[]

abstract setActive(String deviceName, String msg):void
abstract setlnactive(String deviceName, String msg):void
abstract setFailed(String deviceName, String errorMsg):void

Figure 155. DeviceManagement (Class Diagram)

R1B2 Servers Detailed Design Rev. 0

3-219

04/17/01

3.16.1.4.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The arbitration queue
determines the proper message to be displayed on a device and switches the active message
based on conditions present within the system.

For R1B2, the arbitration queue will have a single slot (and is therefore not really a queue).
The device arbitration rules used by the arbitration queue in R1B2 rely on user rights and
operations centers. When the arbitration queue’s slot is in use, another message can only be
added to the queue if the user adding the message is from the same operations center that is
responsible for the existing message, or the user has a special functional right that allows
this rule to be overridden.

The arbitration queue can be interrupted to keep it from performing its automated
processing. This mode is used to allow maintenance on the device being arbitrated by the
gueue without having the queue’s automatic processing interfere with the maintenance
activities. While the queue is interrupted, it allows direct commands to be passed to the
device for maintenance activies. This feature is built in to allow the device to take
advantage of the arbitration queue’s asynchronous processing capabilities.

When an interrupted arbitration queue is taken out of its interrupted state through the use of
the resume method, the arbitration queue evaluates the messages in the queue and restores
the device to the proper state. For R1B2, the arbitration queue simply blanks the device
when the queue processing is resumed.

3.16.1.4.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single
traffic event / response plan item. The class holds the associated message, traffic event, and
response plan item.

3.16.1.4.3 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.16.1.4.4 CommpFailure (Class)

This exception is to be thrown when an error is detected connecting to or communicating
with a device.

R1B2 Servers Detailed Design Rev. 0 3-220 04/17/01

3.16.1.4.5 CommunicationMode (Class)

The CommunicationMode class enumerations the modes of operation for a DMS: ONLINE,
OFFLINE, and MAINT_MODE. The DMSStatus class contains a value of this type.

3.16.1.4.6 DisapprovedMessageContent (Class)

This exception is thrown when a text message to be put on a device contains words that are
not approved. This exception is also thrown if an attempt is made to put the device in an
invalid display state, such as putting the Beacons ON for a blank DMS.

3.16.1.4.7 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

3.16.1.4.8 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a DMS can have:
OK (normal mode), COMM_FAILURE (no communications to the device), or
HARDWARE_FAILURE (device is reachable but is reporting a hardware failure). The
DMSStatus class contains a value of this type.

R1B2 Servers Detailed Design Rev. 0 3-221 04/17/01

3.16.1.5 DictionaryManagement (Class Diagram)

This class diagram shows the interfaces used for the dictionaries.

WordList DictionaryWordType
DMS_WORD
HAR_WORD
1
1
*
DictionaryWord

string m_word

long m_wordTypeBitmask DictionarySuggestion

getWord():string; DictionaryWord m_misspelledWord

getWordType():long; WordList m_replacements

factory create(string word, long bitmask):DictionaryWord

getMisspelledWord():DictionaryWord
* getReplacements():WordList
factory create(DictionaryWord word,
WordList replacements):DictionarySuggestion
1“*
1
Uniquelyldentifiable Dictionary 1
SuggestionList

getlD() Q """""""""""""""" getBannedW ords(AccessToken):WordList
getName() removeBannedWordList(AccessToken,WordList):void 1 *

addBannedW ordList(AccessToken,WordList):void
checkForBannedW ords(string messageToCheck,

string delimiters,

DictionaryWordType wordType):WordList
getApprovedW ords(AccessToken):WordList
addApprovedWordList(AccessToken, WordList):void

removeApprovedW ordList(AccessToken, WordList):void

performApprovedW ordsCheck(string messageToCheck,

string delimiters,

DictionaryWordType wordType):SuggestionList

DictionaryEventType

DictionaryEventinfo

BannedW ordsAdded
BannedW ordsRemoved

Identifier dictionarylD
WordList listOfWords

ApprovedWordsAdded
ApprovedWordsRemoved

Figure 156. DictionaryManagement (Class Diagram)

3.16.1.5.1 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that
are approved or banned from being used in a CHART?2 messaging device. Examples of
messaging devices are DMS, HAR etc.

R1B2 Servers Detailed Design Rev. 0

3-222

04/17/01

3.16.1.5.2 DictionaryEventinfo (Class)

This interface encapsulates the data that is passed with a dictionary CORBA event. It
contains information identifying the dictionary, and the list of words affected by the event.

3.16.1.5.3 DictionaryEventType (Class)

This represents the enumerations used for the different CORBA event types applicable to
the dictionary module.

3.16.1.5.4 DictionarySuggestion (Class)

A DictionarySuggestion represents a list of suggested words that may be used as a
substitute for the word that could not be found in the approved words dictionary database.

3.16.1.5.5 DictionaryWord (Class)

A DictionaryWord represents a word in the chart2 dictionary. It contains information that
qualifies the type of devices that the word applies to.

3.16.1.5.6 DictionaryWordType (Class)

This enumeration is used to tag words that are placed in a dictionary. Words may apply to a
specific messaging device or many.

3.16.1.5.7 SuggestionList (Class)

This interface represents the IDL sequence typedef for the DictionarySuggestion.

3.16.1.5.8 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.16.1.5.9 WordList (Class)

This interface represents the IDL sequence typedef for the DictionaryWord.

R1B2 Servers Detailed Design Rev. 0 3-223 04/17/01

3.16.1.6 DMSControl (Class Diagram)

owsEvent owsEventType

OVSEvertType <dscrimiator DvSAdded
eniir dms1D- ONSDaeted 1 1| DuSDeleed

o R orbstatus
oM ContgurasonEventrto dmsCartgiio e
I
Bsstatuseventlo sausrio

DNSEventType is

Skt | WULTParseFaiure
sing reason
1
DS theDs entfer msD. secuence DVSL:
\dentfier dmsiD DMSStatus status DMSPlanitemData a DVSLst
b 1
e ansip
iMessage m_storedMessage DMSFactory
e Stred g0
1
GeiDMSID - demifier
SetDMS(DMS) : void OMS createDMS(Access Token token, DMSConfiguration config) : DMS.
Gt sanelD entfer . 1| GeiDNSList) - DMSLst
void
Fonthetrics blankSign(AccessToken token, CommandStatus stats) : void
BelConl st ecesaToken ok DVSContasien
‘short fontHeight getStat \5(1 OMSStatus
Short characienwidn | 1 Y OMSConfiguration aink(- bonean
piecesTopen e Commanesius s o o P,
— UUDVShManiMode(A¢ coss Token, CommandSialus Sials) : void Vessage
SHing m-dweLocaton PADISONINACcesTohen (uen. CommandSiats sie) vou N PALRE e OFFLNE i VLTSI
Signfype m dmsSgnType remove(AccessToken token) : vo MANT_MODE
Sinveircs m senifetics 1 1 ¥
Samets m_Sane . ONiSCoriiguraion cnm\uCnmmandSvams Staus): void
Fomveics m fortvetics S s Ton i, DVSNRsSa00 e, COnandSies S 100) .
SignMetrics BB $rSFimecan takeOffine(AccessToken token, CommandStatus stalus) - voi
long vmsSigightPiels e d ype
Pttt R | o grmv dgau:}é\snﬁcannmne 5 .)
o e el | o T defulEsgeOnTime v
oMSStaus DhSMessage
factory createDMSConfiguration() octetm.
‘oS Configuraton «
boolean m_beaconState 1 1| MULTISTing m_dmsMessageMultiString
4 . . : commiide (@
Cperaonasis n opiats getBeaconState(:ccte
A ShorErmorStatus m ShonEmorStatus SEiSting) MU TSiting
ong m stasChangeTme Getinimume aracters0) - lng
factoy reateDSMeSS ML TISting muliStingessage.
BeaconType factory createDMSStatus() : DMSStatus octet beaconState) : DMSMessage
: 1
HARMessageNotifier
BeaconTypevalues SignTypevalues.
P s o ey copre o
oneBeacon =3 cms=3 deacwa!eHARche(C‘EssYnken TrafficEvent, CommandStatus):void
n: = Char = = isHARNoticeActive() : boolean
::Beacn \SyncFlash = 4 $schav— =4 SharedResource smMsucaxedHAR(AccessYnken Chart2HAR):void
getDirection(): D\lecnm
SaDirecton(Directon)void
Chart2DMSConfiguration
ong m_fmsDevceld ar atus
identifier m_owningOrgiD CharZDMSStat Chart2DMSFactory
Siingm ageniiosiame Chartzoms,
Siogm_agentiostlame eme Kerser m contligopCerterd 1
g m_SCo)) Lo somm couimOiceone
ond mpolCyciaDuraion . NeworkComnectionSite OMSRPIDaa
string m_devicePhoneNumber jetArbitrationQueue() : ArbitrationQueue: 1
string m_deviceCommString %enmmTesw%(ﬂccgssYukm D%Tesﬂyp& fong terations, CommandStatus status) : void | fecto createChanZDSStatus() : Chart2DMSStatus Chari2DMS m dms
DeviceModelD m_deviceNodellD DMSNessage m_message K
B e e .
long m_deviceResponseTimeout 1 1 DNE() C)hanzDhS
Sing - cevicevaxBaLGRate Sagel sage
DMSMessage m_shazamMessage NetworkConnectionSite sevDMS(ChanZDVS) void
e ssag) : void
factory createChart2DMSConfiguration() : Chart2DMSConfiguration 1 fact ‘m‘/ creale DNEWP\DEKE()
il i 0 2 FPO500Status DOMSRPIData
it J
octet m_curreraisgtum
K octet m_currentiisgSource cee
factory createF P9S00Status() : FP9S00Status
DMSTestType FPIS00DMS
cee DMSRandom
OSpermutason
oken void | .

ArbQueueEntry

Figure 157. DMSControl (Class Diagram)

cmdstatus

3.16.1.6.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The arbitration queue
determines the proper message to be displayed on a device and switches the active message
based on conditions present within the system.

For R1B2, the arbitration queue will have a single slot (and is therefore not really a queue).
The device arbitration rules used by the arbitration queue in R1B2 rely on user rights and
operations centers. When the arbitration queue’s slot is in use, another message can only be
added to the queue if the user adding the message is from the same operations center that is
responsible for the existing message, or the user has a special functional right that allows
this rule to be overridden.

R1B2 Servers Detailed Design Rev. 0 3-224 04/17/01

The arbitration queue can be interrupted to keep it from performing its automated
processing. This mode is used to allow maintenance on the device being arbitrated by the
gueue without having the queue’s automatic processing interfere with the maintenance
activities. While the queue is interrupted, it allows direct commands to be passed to the
device for maintenance activies. This feature is built in to allow the device to take
advantage of the arbitration queue’s asynchronous processing capabilities.

When an interrupted arbitration queue is taken out of its interrupted state through the use of
the resume method, the arbitration queue evaluates the messages in the queue and restores
the device to the proper state. For R1B2, the arbitration queue simply blanks the device
when the queue processing is resumed.

3.16.1.6.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single
traffic event / response plan item. The class holds the associated message, traffic event, and
response plan item.

3.16.1.6.3 BeaconType (Class)

The BeaconType class defines the beacon type for a DMS. Its values are defined by the
BeaconTypeValues class. It is a part of a DMSConfiguration object.

3.16.1.6.4 BeaconTypeValues (Class)

The BeaconTypeValues class enumerates the various beacon types used on DMS devices
(number of beacons and whether and in what manner they flash).

3.16.1.6.5 CHART2DMS (Class)

The CHART2DMS class extends the DMS interface and defines a more detailed interface
to be used in manipulating the CHART Il-specific DMS objects within CHART II. It
provides a method for getting the DMSArbitrationQueue for a CHART Il DMS, which can
then be used by traffic events to provide input as to what each traffic event desires to be on
the sign. It also provides a method to perform testing on a sign. This method can be
extended by derived classes for specific models of signs, which know how to perform
certain types of testing on their specific model of sign. CHART Il business rules include
concepts such as shared resrouces, arbitration queues, and linking devices usage to traffic
events, concepts which go beyond what would be industry-standard DMS control.

3.16.1.6.6 CHART2DMSConfiguration (Class)

The CHART2DMSConfiguration class is an abstract class which extends the
DMSConfiguration class to provide configuration information specific to CHART Il
processing. Such information includes how to contact the sign under CHART 11 software
control, the default SHAZAM message for using the sign as a HAR Notifier, and the
owning organization. Such data extends beyond what would be industry-standard
configuration information for a DMS.

R1B2 Servers Detailed Design Rev. 0 3-225 04/17/01

3.16.1.6.7 CHART2DMSFactory (Class)

The CHART2DMSFactory class extends the DMSFactory interface to provide additional
CHART Il specific capability. This factory creates CHART2DMS objects (extensions of
DMS objects). It implements SharedResourceManager capbility control DMS objects as
shared resources.

3.16.1.6.8 CHART2DMSStatus (Class)

The CHART2DMSStatus class is an abstract class that extends the DMSStatus class to
provide status information specific to CHART Il processing, such as information on the
controlling operations center for the sign. This data extends beyond what would be
industry-standard status information for a DMS.

3.16.1.6.9 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.16.1.6.10 CommunicationMode (Class)

The CommunicationMode class enumerations the modes of operation for a DMS: ONLINE,
OFFLINE, and MAINT_MODE. The DMSStatus class contains a value of this type.

3.16.1.6.11 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign
(DMS) objects within CHART II. It specifies methods for setting messages and clearing
messages from a sign (in maintenance mode), polling a sign, changing the configuration of
a sign, and reseting a sign. (Setting messages on a sign in online mode are not accomplished
by manipulating a DMS directly; that is accomplished by manipulating traffic events, which
interfaces with the DMSArbitrationQueue of a sign. This activity involves the DMS
extension, CHART2DMS, which defines interactions with signs under CHART Il business
rules.)

3.16.1.6.12 DMSArbQueueEntry (Class)

The DMSArbQueueEntry class provides an implementation of ArbQueueEntry that is used
for most standard entries placed on the arbitration queue. When its setActive, setlnactive,
and setFailed methods are called, it adds a log entry to its traffic event and calls the
appropriate method on its response plan item (setActive, setlnactive, or update).

R1B2 Servers Detailed Design Rev. 0 3-226 04/17/01

3.16.1.6.13 DMSConfiguration (Class)

The DMSConfiguration class is an abstract class that describes the configuration of a DMS
device. This configuration information is normally fairly static: things like the size of the
sign in characters and pixels, its name and location, and how to contact the sign (as opposed
to dynamic information like the current message on the sign, which is defined in an
analogous Status object).

3.16.1.6.14 DMSConfigurationEventinfo (Class)

The DMSConfigurationEventinfo class is the type of DMSEvent used for DMSEventType
DMSConfigChanged. It contains a DMSConfiguration object that details the new
configuration for a CHART Il DMS object.

3.16.1.6.15 DMSEvent (Class)

The DMSEvent class is a union which can be any one of four events relating to DMS
operations which can be pushed on an Event Channel to update event consumers on DMS-
related activities. The four types of events, defined by the enumeration DMSEventType,
are: DMSAdded, DMSDeleted, CurrentDMSStatus, and DMSConfigChanged.

3.16.1.6.16 DMSEventType (Class)

The DMSEventType is an enumeration which defines the four types of events relating to
DMS operations which can be pushed on an Event Channel to update event consumers on
DMS-related activities. The four types of events are: DMSAdded, DMSDeleted,
CurrentDMSStatus, and DMSConfigChanged.

3.16.1.6.17 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the
CHART Il system. It also provides a method to get a list of DMS devices currently in the
system.

3.16.1.6.18 DMSList (Class)

The DMSList class is simply a list of DMS devices which can be used by the DMS Factory
and other classes for maintaining the list or other lists of DMS objects.

3.16.1.6.19 DMSMessage (Class)

The DMSMessage class is an abstract class that describes a message for a DMS. It consists
of two elements: a MULTI-formatted message and beacon state information (whether the
message requires that the beacons be on). The DMSMessage is contained within a
DMSStatus object, used to communicate the current message on a sign, and so within a
DMSRPIData object, used to specify the message that should be on a sign when the
response plan item is executed.

R1B2 Servers Detailed Design Rev. 0 3-227 04/17/01

3.16.1.6.20 DMSPlanltemData (Class)

The DMSPIanltemData class is a valuetype that contains data stored in a plan item for a
DMS. It is derived from PlanltemData.

3.16.1.6.21 DMSRPIData (Class)

The DMSRPIData class is an abstract class that describes a response plan item for a DMS.
It contains the unique identifier of the DMS to contain the DMSMessage, and the
DMSMessage itself.

3.16.1.6.22 DMSStatus (Class)

The DMSStatus class is an abstract value-type class that provides status information for a
DMS. This status information is relatively dynamic: things like the current message on the
sign, its beacon state, its current operational mode (online, offline, maintenance mode), and
current operational status (OK, COMM_FAILURE, or HARDWARE_FAILURE). (More
static information about the sign, such as its size and location, is defined in an analogous
Configuration object.)

3.16.1.6.23 DMSStatusEventinfo (Class)

The DMSStatusEventinfo class is the type of DMSEvent used for DMSEventType
CurrentDMSStatus. It contains a DMSStatus object that details the new status for a CHART
I1 DMS object.

3.16.1.6.24 DMSTestType (Class)

The DMSTestType enumeration identifies two types of tests which can be performed on
DMS devices: random and permutation.

3.16.1.6.25 FontMetrics (Class)

The FontMetrics class is a non-behavioral class (structure) which contains information
regarding to the font size used on a DMS. It is a part of a DMSConfiguration object.

3.16.1.6.26 FP9500Configuration (Class)

The FP9500Configuration class is an abstract class that extends the
CHART2DMSConfiguration class to provide configuration information specific to an
FP9500 model of DMS. It is exemplary of potentially a whole suite of subclasses specific to
a specific brand and model of sign for manufacturer-specific configuration information.

R1B2 Servers Detailed Design Rev. 0 3-228 04/17/01

3.16.1.6.27 FP9500DMS (Class)

The FP9500DMS class extends the CHART2DMS interface and defines a more detailed
interface to be used in manipulating FP9500 models of DMS signs. It is exemplary of
potentially a whole suite of subclasses specific to a specific brand and model of sign for
manufacturer-specific DMS control. For instance, the FP9500DMS has a performPixel Test

method, which knows how to invoke and interpret a pixel test as supported by the FP9500
model DMS.

3.16.1.6.28 FP9500Status (Class)

The FP9500Status class is an abstract class that extends the CHART2DMSStatus class to
provide status information specific to an FP9500 model of DMS. It is exemplary of
potentially a whole suite of subclasses specific to a specific brand and model of sign for
manufacturer-specific configuration information. In this case, additional information
provided the FP9500 model includes the current message number and current message
source.

3.16.1.6.29 Geolocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

3.16.1.6.30 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that
can be used to notify the traveler to tune in to a radio station to hear a traffic message being
broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device
to better determine if activation of the device is warranted for the message being broadcast
by the HAR. This interface can be implemented by SHAZAMSs and by DMS devices that
are allowed to provide a SHAZAM-like message in the absence of any more useful
messages to display.

3.16.1.6.31 HARNOotifierArbQueueEntry (Class)

The HarNotifierArbQueueEntry class provides an implementation of the ArbQueueEntry
used for entries that are placed on the arbitration queue to put a “SHAZAM” message on a
DMS. These types of messages have a low priority and are not allowed to overwrite any
standard message (from a DMSArbQueueEntry) that is currently displayed on a device.
These types of messages are also different in that they are not added to the queue directly
by a response plan item and are instead included as a sub-task of activating a message on a

HAR. The HAR uses a command status object to track the progress of the HAR notifier
message.

R1B2 Servers Detailed Design Rev. 0 3-229 04/17/01

3.16.1.6.32 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

3.16.1.6.33 MULTIParseFailure (Class)
The MULTIParseFailure class is an exception to be thrown when a MULTI-formatted DMS
message cannot be correctly parsed.

3.16.1.6.34 MULTIString (Class)

The MULTIString class is a MULTI-formatted DMS message. The DMSMessage class
contains a MULTIString value to specify the content of the sign, in addition to the beacon
state value.

3.16.1.6.35 NetworkConnectionSite (Class)

The NetworkConnectionSite class contains a string that is used to specify where a service is
running. This field is useful for administrators in debugging problems should an object
become “software comm failed”. It is included in the CHART2DMSStatus.

3.16.1.6.36 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a DMS can have:
OK (normal mode), COMM_FAILURE (no communications to the device), or
HARDWARE_FAILURE (device is reachable but is reporting a hardware failure). The
DMSStatus class contains a value of this type.

3.16.1.6.37 PlanltemData (Class)

This class is a valuetype that is the base class for data stored in a plan item. Derived classes
contain specific data that map a device to an operation and the data needed for the
operation. For example a derived class provides a mapping between a specific DMS and a
DMSMessage.

3.16.1.6.38 ResponsePlanitemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan
item. Derived classes of this base class have specific implementations for the type of device
the response plan item is used to control.

3.16.1.6.39 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

R1B2 Servers Detailed Design Rev. 0 3-230 04/17/01

3.16.1.6.40 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.16.1.6.41 ShortErrorStatus (Class)

The ShortErrorStatus class identifies an error condition for a DMS. It is a bit field defined
by the NTCIP center to field standard for DMS that specifies error conditions that may be
present on the device. This class is used to encapsulate the bit mask and provide a user-
friendly interface to the error conditions. The DMSStatus class contains a value of this type.

3.16.1.6.42 SignMetrics (Class)

The SignMetrics class is a non-behavioral class (structure) which contains information
regarding to the size of a DMS, in pixels and characters. It is a part of a DMSConfiguration
object.

3.16.1.6.43 SignType (Class)

The SignType class defines the sign type for a DMS. Its values are defined by the
SignTypeValues class. It is a part of a DMSConfiguration object.

3.16.1.6.44 SignTypeValues (Class)

The SignTypeValues class enumerates the various sign types DMS devices. Examples are
bos, cms, vmsChar, etc.

3.16.1.6.45 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 Servers Detailed Design Rev. 0 3-231 04/17/01

3.16.1.7 PlanManagement (Class Diagram)

This class diagram contains the interfaces used in the creation and management of plans. A
plan is a group of actions that are set-up in advance to be used in response to a traffic event.
Given the unpredictable nature of traffic events, pre-defined plans are usually only useful

for congestion, safety messages, and weather-related messages.

PlanFactory

Uniquelyldentifiable

createPlan(AccessToken token,
string name):Plan
getPlans():PlanList

PlanEventType

PlanAdded
PlanRemoved
PlanitemAdded
PlanitemRemoved
PlanNameChanged
PlanitemChanged

getiD()
getName()
PlanltemList
1
Plan 1%
* 1 * Planltem
setName(AccessToken,string):void
addlitem(AccessToken,PlanitemData):Planitem
removeltem(AccessToken,Planitem):void o
getitems():PlanitemList setName(AccessToken, string):void .
remove(AccessToken):void setData(AccessToken, PlanitemData):void
isUsingObject(IdentifierList objectiDs) getData():PlanitembData
remove(AccessToken):void
1% getPlanID():ldentifier
" isUsingObject(IdentifierList):boolean
1
1 1
PlanList Planitem Data

isUsingObject(ldentifierList objectiDs):boolean

PlanAddedEventinfo

PlanNameChangeEventinfo

Plan thePlan
Identifier planiD

Identifier planiD
string newName

PlanltemAddedEventinfo

PlanltemRemovedEventinfo

PlanltemChangedEventinfo

Planitem planitem
Identifier planiD
Identifier planitemID

Identifier planiD
Identifier planitemID

Planitem thePlanitem;
PlanitemData itemData;
string itemName;
Identifier planiD;
Identifier planitemID;

Figure 158. PlanManagement (Class Diagram)

R1B2 Servers Detailed Design Rev. 0

3-232

04/17/01

3.16.1.7.1 Plan (Class)

A Plan is a group of actions listed out in advance to be used in response to a traffic event.
Each action is defined to be a Plan item. The Plan supports functionality to add and remove
plan items.

3.16.1.7.2 PlanAddedEventinfo (Class)
The PlanAddedEventinfo class defines the data passed in the PlanAdded event.

3.16.1.7.3 PlanEventType (Class)

The PlanEventType class is an enumeration that describes the types of events that can be
pushed for plans. When a plan item is added or modified it is up to the derived item type to
push the appropriate type of event.

3.16.1.7.4 PlanFactory (Class)

This class creates, destroys, and maintains the collection of plans that can be used in the
system.

3.16.1.7.5 Planltem (Class)

This class represents an action within the system that can be planned in advance. This
CORBA interface is subclassed for specific actions that can be planned in the system.

3.16.1.7.6 PlanltemAddedEventinfo (Class)

The PlanltemAddededEventinfo class defines the data passed in the PlanltemAdded event.

3.16.1.7.7 PlanltemChangedEventinfo (Class)

The PlanltemChangedEventinfo class defines the data passed in the PlanltemChanged
event.

3.16.1.7.8 PlanltemData (Class)

This class is a valuetype that is the base class for data stored in a plan item. Derived classes
contain specific data that map a device to an operation and the data needed for the
operation. For example a derived class provides a mapping between a specific DMS and a
DMSMessage.

3.16.1.7.9 PlanltemList (Class)

The PlanltemList class is simply a collection of Planltem objects.

3.16.1.7.10 PlanltemRemovedEventinfo (Class)

The PlanltemRemovedEventinfo defines the data passed in the PlanitemRemoved event.

R1B2 Servers Detailed Design Rev. 0 3-233 04/17/01

3.16.1.7.11 PlanList (Class)

The PlanList class is simply a collection of Plan objects.

3.16.1.7.12 PlanNameChangeEventinfo (Class)

The PlanNameChangeEventinfo class defines the data passed in the PlanNameChanged
event.

3.16.1.7.13 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 Servers Detailed Design Rev. 0 3-234 04/17/01

3.16.1.8 HARControl (Class Diagram)

This class diagram contains the interfaces relating to the control of Highway Advisory
Radio (HAR).

HARMessageTextClip HARMessagePrestoredClip
HARMessageAudioClip
string m_messageText HARSIotNumber slotNumber
HARMessageAudioDataClip Identifier m_audioCliplD
udioC| m_streamer getMessageText():string getSlotNumber():HARSIotNumber
AudioDataFormat m_audioDataFormat setSlotNumber(HARSIotNumber):void
AudioData m_audioData stream(in long maxChunkSize, stream(in long maxChunkSize, factory lip():+ 0 lip
in onsumer consumer:void in AudioDataFormat format,
factory createAudioDataClip(in AudioDataFormat format, | | factory createAudioClip(identifier, in AudioPushConsumer consumer):void
in AudioData data)HARMessageAudioDataClip AudioStreamer):HARMessageAudioClip factory createTextClip(string text):HARMessageTextClip

1 * HARPIanttem Data
StoredMessage HARMessageClipList
HAR m_har
Identifier m_hariD
StoredMessage m_storedMsg Uniquely Ci ‘ GeoLocatable ‘ Message
Identifier m_s D
Direction m_direction
HARFactor 1
Y factory createt Data()
string HARPlantemData
createHAR(AccessToken, *
HARConfiguration) : HAR HARMessage
getHARs():HARList
HARMessageClip m_header
1 1 HARMessageClipListm_body
HARMessageClip m_trailer
HAR boolean m_useDefailltHeader *
. boolean m_useDefaultTrailer HARMessageClip
1 0.1
> string m_description
etC: Token, HARC c long m_voiceSeconds
getC) : HARC:H 1 *
getStatus():HARStatus getDescription():string
SharedResourceManager Token, , Co setDescription(string):void
Token, C 1 *| getVoiceSeconds():long
Token, \ lip, @
Commandstatus):void
Token,)
Commandstatus):void
Chart2HARFactory isBlank(:bodlean &, 1 1
Pl Token, C oid g HARConfiguration
setTr Off(AccessToken, C
setT itterOn(AccessToken, C oid string m_name
Token, Ct string m_deviceLocation
HARStatus string m_devicePhoneNumber
1% 1 string m_deviceMonitorPhoneNumber
m_cur F ge m g
HARSIotDataListm_slotData HARMessageClip m_defauitHeader
SharedResource . boolean m transmitteron HARMessageClip m_defaultTrailer
A 1 | CommMode m commMode long m_interMessageSpacingSecs
HARList = long m_maxStoredVoiceSeconds
factory createHARStatus():HARStatus
ArbitrationQueue 4 0 factory createHARConfiguration():HARConfiguration
Chart2HARStatus
Chart2HAR Identifier m_controllingOpCtriD
@ stringm_controllingOpCtrName
NetworkC m_networkC Chart2HARConfiguration
getArbitrationQueue(): ArbitrationQueue factory createChart2HARStatus():Chart2HARStatus | | HARMsgNofifierlDList m_msgNotifiers
factory createChart2HAR Configuration():
HARArbQueueEntry 1 1| Chart2HARConfiguration
ResponsePlanitem m_responsePlanitem 1 K

HARMsgNotifieriDList m_notifiers ToActivate

HARMessageNotifier
HARSIotUsagelndicator HARRPIData

DefaultHeader Chart2HAR m_har
DefaultTrailer HARMessage m_message
DefaultMessage HARMsgNotifieriDList m_msgNotifiers ToActivate
User
HARSlotNumber HARSIlotData HARSlIotDatalList

HARSIotNumber slotNumber
HARMessageClip slotMessageClip 1
HARSIotUsagelndicator slotUsagelndicator ————@

HAREventType HARConfigur info Info
HARAdded HAR theHAR Identifier id
HARRemoved dentifier id HARStatus status
HARStatusChanged HARConfiguration config

Co hanged

Figure 159. HARControl (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-235 04/17/01

3.16.1.8.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The arbitration queue
determines the proper message to be displayed on a device and switches the active message
based on conditions present within the system.

For R1B2, the arbitration queue will have a single slot (and is therefore not really a queue).
The device arbitration rules used by the arbitration queue in R1B2 rely on user rights and
operations centers. When the arbitration queue’s slot is in use, another message can only be
added to the queue if the user adding the message is from the same operations center—the
one responsible for the existing message—or the user has a special functional right that
allows this rule to be overridden.

The arbitration queue can be interrupted to keep it from performing its automated
processing. This mode is used to allow maintenance on the device being arbitrated by the
gueue without having the queue’s automatic processing interfere with the maintenance
activities.

When an interrupted arbitration queue is taken out of its interrupted state through the use of
the resume method, the arbitration queue evaluates the messages in the queue and restores
the device to the proper state. For R1B2, the arbitration queue performs no special
processing when resumed because the queue cleans itself when interrupted and does not
allow new entries while interrupted.

3.16.1.8.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single
traffic event / response plan item. The class holds the associated message, traffic event, and
response plan item.

3.16.1.8.3 CHART2HAR (Class)

The CHART2HAR class is an extension of the HAR that is aware of CHART2 business
rules, such as arbitration queues, linking device usage to traffic events, and the concept of a
shared resource.

3.16.1.8.4 CHART2HARConfiguration (Class)

This class contains configuration data for the HAR that is used for CHART Il specific
processing (as opposed to the configuration values contained in HARConfiguration that
relate to typical HAR usage).

R1B2 Servers Detailed Design Rev. 0 3-236 04/17/01

3.16.1.8.5 CHART2HARFactory (Class)

This interface defines objects capable of creating CHART2HAR objects. This factory is
also responsible for monitoring the HARS as shared resources and must report when a HAR
that is currently broadcasting a message (other than the default) does not have a user logged
into the system that is from the controlling operations center.

3.16.1.8.6 CHART2HARStatus (Class)

This class contains status information for a CHART2HAR object. This information is
specific to CHART Il processing and extends beyond the status related to typical HAR
device control.

3.16.1.8.7 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.16.1.8.8 Geolocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

3.16.1.8.9 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to
broadcast traffic related information over a localized radio transmitter, making the
information available to the traveler.

3.16.1.8.10 HARArbQueueEntry (Class)

This class is an arbitration queue entry used to set the message on a HAR on behalf of a
traffic event. This entry also specifies the HARMessageNotifiers to be activated when the
message is activated.

3.16.1.8.11 HARConfiguration (Class)

This class contains configuration data for a HAR device.

R1B2 Servers Detailed Design Rev. 0 3-237 04/17/01

3.16.1.8.12 HARConfigurationEventinfo (Class)

This class defines data pushed with a HARConfigurationChanged and HARAdded CORBA
event.

3.16.1.8.13 HAREventType (Class)

This enumeration defines the types of CORBA events that are pushed on a HARControl
event channel.

3.16.1.8.14 HARFactory (Class)
This CORBA interface allows new HAR objects to be added to the system.

3.16.1.8.15 HARList (Class)

The HARLIst class is simply a collection of HAR objects.

3.16.1.8.16 HARMessage (Class)

This utility class represents a message that is capable of being stored on a HAR. It stores
the HAR message as a HAR message header, body and footer. It contains methods to input
and output them in different formats.

3.16.1.8.17 HARMessageAudioClip (Class)

This class is a thin wrapper for recorded voice that is to be played on a HAR. This class is
passed around the system instead of passing the actual voice data. When the actual voice
data is needed to play to the user or to program the HAR device, this object’s streamer is
used to stream the actual voice data.

3.16.1.8.18 HARMessageAudioDataClip (Class)

This class is a message clip that contains audio data and the format of the audio data.
Because audio data can be very large, this type of clip is reserved for use when recorded
voice is first entered into the system. Recorded voice that already exists in the system is
passed throughout the system using HARMessageAudioClip to avoid sending the large
audio data when possible.

3.16.1.8.19 HARMessageClip (Class)

This class represents a section of a HAR message. It can be either plain text that would
need to be converted to audio prior to broadcast, or binary format (MP3, WAV, etc.)

3.16.1.8.20 HARMessageClipList (Class)

The HARMessageClipList is a collection of HARMessageClip objects.

R1B2 Servers Detailed Design Rev. 0 3-238 04/17/01

3.16.1.8.21 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that
can be used to notify the traveler to tune in to a radio station to hear a traffic message being
broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device
to better determine if activation of the device is warranted for the message being broadcast
by the HAR. This interface can be implemented by SHAZAMSs and by DMS devices that
are allowed to provide a SHAZAM-like message in the absence of any more useful
messages to display.

3.16.1.8.22 HARMessagePrestoredClip (Class)

This class stores data used to identify the usage of a clip that has already been stored on a
HAR device.

3.16.1.8.23 HARMessageTextClip (Class)

This class represents a HAR message content object that is in plain text format. This
message can be checked for banned words and will be converted into a voice message using
a speech engine to broadcast on a HAR device.

3.16.1.8.24 HARPlanltemData (Class)

This class is used to associate a message with a HAR for use in Plans.

3.16.1.8.25 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a
command to put a message on a HAR when executed. When the item is executed, it adds
the message to the arbitration queue of the specified HAR. When the item is removed from
the response plan (manually or implicitly through closing the traffic event) the item asks the
HAR’s arbitration queue to remove the message.

3.16.1.8.26 HARSIotData (Class)

This struct defines the data used to identify the contents of a slot in the HAR controller.

3.16.1.8.27 HARSIotDatalL.ist (Class)
The HARSIotDataList class is simply a collection of HARSIotData objects.

3.16.1.8.28 HARSIotNumber (Class)

The HARSIotNumber is an integer used to specify slot numbers on a HAR controller.

3.16.1.8.29 HARSIotUsagelndicator (Class)

This enum defines indicators used to show the usage of a given slot in the HAR controller.

R1B2 Servers Detailed Design Rev. 0 3-239 04/17/01

3.16.1.8.30 HARStatus (Class)

This class contains data that indicates the current status of a HAR device.

3.16.1.8.31 HARStatusChangedEventinfo (Class)

This class contains data that is pushed when the HARStatusChanged CORBA event is
pushed on the HARControl event channel.

3.16.1.8.32 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

3.16.1.8.33 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

3.16.1.8.34 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.16.1.8.35 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains
attributes such as category and message description, which are used to allow the user to
organize messages.

3.16.1.8.36 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 Servers Detailed Design Rev. 0 3-240 04/17/01

3.16.1.9 ResourceManagement (Class Diagram)

This class diagram contains the interfaces pertaining to shared resources, operations centers,
user login sessions, and organizations.

Uniquelyldentifiable

getiD()
getName()

Organization OperationsCenter SharedResource SharedResourceManager

loginUser(UserL

Vserte getControlingOpCenter():identifier getResoutces() ; SharedResourceList
seriame name, getControlingOpCenterName():string dentifier opCtriD) ist
5‘""3 oot g) AccessToken getOwnerOrgID():Identifier hasConlroI\edRescurces(\demmer 0opCtriD) : boolean
logoutUser(Access Token token
Userl oglnSesslon loginSession):void 1
changeUser(Access Token token.
UsertoginSession dldSession,
UserLognSession newSession,
UserName useram
ascworchAccessToken
getComrouedResomces ():SharedResourceList
getLoginSessions():LoginSessionList
forceLogout(AccessToken token,
1 UserLoginSession loginSession):void
isUserLoggedin(UserName userName):boolean
getNumLoggedinUsers():long
transferSharedResources(Access Token token,
haredResourceList resources, SharedResourceList
OperationsCenter targetOpCenter):void TransferrableSharedResource
verityUserPassword(UserName userame,
string password):boolean
addResponseParticipant(Access Token token,
removeResponsePart Clpail&"c"csee;?{gg"na'l‘)‘k‘f"'c‘pa"‘) void vod secContolingOpCenter(AccessToken token,
esponseParticipant participant) : void E" i '%S"&"'D

¢ L)- P pant]] vmdc|earcomroumgOpCemer(AccessTokentoken)

ResponseParticipant UserLoginSession LoginSessionList

string m_name Lx *
ResponseParticipantType m_type

getOpCenter():OperationsCenter
getUsername():UserName
ping():boolean

1 void forceLogout(AccessToken token)

1

ResponseParticipantType

TYPE_ORGANIZATION
HasCi e ResourceControlConflict
TVPE RESOU
TYPE SPECW- NEEDS string reason string reason
string controlingOpCenterName
ResourceEventType LoginFailure LogoutFailure InvalidOperationsCenter
ControlingOpCirChanged string reason string reason string reason
UnhandledControlledResourcesEvent
UnhandledControlledResourcesInfo ControllingOpCtrChangeEventinfo
dentiier opCtriD entfier resourcelD
string opCtrName tring opCtrName
dentiier opcD

Figure 160. ResourceManagement (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-241 04/17/01

3.16.1.9.1 ControllingOpCtrChangeEventinfo (Class)

The ControllingOpCtrChangeEventinfo class defines data to be passed on a
ControllingOpCtrChange event.

3.16.1.9.2 HasControlledResources (Class)

This class represents an exception which describes a failure caused when the user tries to do
something which requires that no resources be controlled, yet the Operations Center which
the user is logged in to is still controlling one or more shared resources.

3.16.1.9.3 InvalidOperationsCenter (Class)

Exception that describes a failure caused when the operations center specified is not valid
for the attempted operation.

3.16.1.9.4 LoginFailure (Class)

This class represents an exception that describes a login failure.

3.16.1.9.5 LoginSessionList (Class)

A LoginSessionList is simply a collection of UserLoginSession objects.

3.16.1.9.6 LogoutFailure (Class)

This exception is thrown when an error occurs while logging a user out of the system.

3.16.1.9.7 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is
used to log users into the system. If the username and password provided to the loginUser
method are valid, the caller is given a token that contains information about the user and the
functional rights of the user. This token is then used to call privileged methods within the
system. Shared resources in the system are either available or under the control of an
OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it
can ensure that the last user does not log out while there are shared resources under its
control. This list of logged in users is also available for monitoring system usage or to force
users to logout for system maintenance.

3.16.1.9.8 Organization (Class)

The Organization interface extends the Uniquelyldentifiable interface and will represent an
organization, that is an administrative body that can control or own resources.

R1B2 Servers Detailed Design Rev. 0 3-242 04/17/01

3.16.1.9.9 ResourceControlConflict (Class)

This exception is thrown when attempt to gain control of a shared resource fails because the
resource is under the control of a different operations center and the requesting user does
not have the functional right to override the restriction.

3.16.1.9.10 ResourceEventType (Class)

The ResourceEventType enumeration defines all of the resource related event types.

3.16.1.9.11 ResponseParticipant (Class)

The ResponseParticipant class is a non-behavioral structure that specifies a participant in a
response.

3.16.1.9.12 ResponseParticipantType (Class)

The ResponseParticipantType enumeration defines a type of entity participating in a
response to an event. This could be an external organization, a mobile unit, a mobile device
or special purpose vehicle, or a special needs vehicle equipped to handle unusual or
hazardous situations.

3.16.1.9.13 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

3.16.1.9.14 SharedResourcelList (Class)

A SharedResourceL.ist is simply a collection of SharedResource objects.

3.16.1.9.15 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.16.1.9.16 TransferrableSharedResource (Class)

The TransferrableSharedResource interface extends the SharedResource interface, which is
implemented by SharedResource objects whose control can be transferred from one
operations center to another.

R1B2 Servers Detailed Design Rev. 0 3-243 04/17/01

3.16.1.9.17 UnhandledControlledResourcesinfo (Class)

The UnhandledControlledResourcesEvent class is an event pushed when it is detected that
an OperationsCenter is controlling one or more controlled resources but has no users logged
in.

3.16.1.9.18 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure unigueness.

3.16.1.9.19 UserLoginSession (Class)

The UserLoginSession CORBA interface is used to store information about a user that is
logged into the system. This object is served from the GUI and provides a means for the
servers to call back into the GUI process.

R1B2 Servers Detailed Design Rev. 0 3-244 04/17/01

3.16.1.10

HARNotification (Class Diagram)

This Class Diagram shows the classes involved in manipulating HAR message
notifications. The HAR notifiers can be SHAZAMSs or DMS devices that are acting as
SHAZAMs. Note that R1B2 prevents a DMS SHAZAM message from overwriting another

type of DMS message.

CommEnabled

SharedResourceManager

‘ SharedResource

‘ Uniquelyldentifiable

SHAZAMFactory

Geolocatable

Uniquelyldentifiable
/N

HARMessageNotifier

activateHARNotice(AccessToken, TrafficEvent, CommandStatus):void
deactivateHARNotice(AccessToken, TrafficEvent, CommandStatus):void
isHARNoticeActive() : boolean

setAssociatedHAR (AccessToken, Chart2HAR):void

getAssociatedHAR() : Chart2HAR

getDirection():Direction

setDirection(Direction):void

SHAZAMConfiguration

string m_name;

SHAZAM

string m_location
string m_phoneNumber

Direction m_direction
HAR m_har
long m_refreshintervalMins

createSHAZAM(AccessToken,
SHAZAMConfigData) : SHAZAM

SHAZAMEventType

SHAZAMAdded
SHAZAMRemoved
SHAZAMStatusChanged
SHAZAMConfigurationChanged

setBeaconsOn(AccessToken, CommandStatus):void
setBeaconsOff(AccessToken, CommandStatus):void
refresh(AccessToken, CommandStatus):void
setConfiguration(Access Token, SHAZAMConfigData, CommandStatus)
getConfiguration(AccessToken) : SHAZAMConfigData

getStatus() : SHAZAMStatus

factory createSHAZAMConfiguration(): SHAZAMConfiguration

remove(AccessToken):void

SHAZAMConfigurationEventinfo

SHAZAMStatusChangeEventinfo

SHAZAM theSHAZAM
Identifier id;
SHAZAMConfiguration config

Identifier id
SHAZAMStatus status

Identifier
HARMsgNotifierIDList
m_id
1 1.*
@ Identifier(byte[] chartiD)
equals(Object obj)
hashCode()

byte[] getiD()

SHAZAMStatus

boolean m_activated
CommunicationMode m_commMode
Identifier m_controllingOpCtriD

string m_controllingOpCtrName

NetworkConnectionSite m_networkConnectionSite

factory createSHAZAMStatus ():SHAZAMStatus

Figure 161. HARNOotification (Class Diagram)

R1B2 Servers Detailed Design Rev. 0

3-245

04/17/01

3.16.1.10.1 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.16.1.10.2 GeolLocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

3.16.1.10.3 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that
can be used to notify the traveler to tune in to a radio station to hear a traffic message being
broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device
to better determine if activation of the device is warranted for the message being broadcast
by the HAR. This interface can be implemented by SHAZAMSs and by DMS devices that
are allowed to provide a SHAZAM-like message in the absence of any more useful
messages to display.

3.16.1.10.4 HARMsgNotifierIDList (Class)

This typedef is a sequence of HARMessageNotifier identifiers.

3.16.1.10.5 Identifier (Class)

Wrapper class for a CHART? identifier byte sequence. This class will be used to add
identifiable objects to hash tables and perform subsequent lookup operations.

3.16.1.10.6 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

3.16.1.10.7 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an

R1B2 Servers Detailed Design Rev. 0 3-246 04/17/01

event on the ResourceManagement event channel to notify others of this condition.

3.16.1.10.8 SHAZAM (Class)

This class is used to represent a SHAZAM field device. This class uses a helper class to
perform the model specific protocol for device command and control.

3.16.1.10.9 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device.

3.16.1.10.10 SHAZAMConfigurationEventinfo (Class)

This class contains data that is pushed on the SHAZAMControl CORBA event channel
with a SHAZAMConfigurationChanged or SHAZAMAdded event type.

3.16.1.10.11 SHAZAMEventType (Class)

This enum defines the types of CORBA events that are pushed on a SHAZAM control
event channel.

3.16.1.10.12 SHAZAMFactory (Class)
This CORBA interface allows new SHAZAM objects to be added to the system.

3.16.1.10.13 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device.

3.16.1.10.14 SHAZAMStatusChangeEventinfo (Class)

This class contains data that is pushed on a SHAZAMControl event channel with a
SHAZAMStatusChanged event.

3.16.1.10.15 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 Servers Detailed Design Rev. 0 3-247 04/17/01

3.16.1.11

LibraryManagement (Class Diagram)

This class diagram shows all classes and relationships relating to message libaries.

Uniquelyldentifiable

getiD()
getName()

StoredMessageList

1%
MessageLibrary StoredMessage
MessageLibraryFactory
*
1
setName(AccessToken token, string name):void getMessageData():StoredMessageData
createLibrary(AccessToken token,string name):MessageLibrary createStoredMessage(AccessToken token, getMessage():Message .
getLibraryList():MessageLibraryList Message msg, setMessage(AccessToken, Message):void
string description, setMessageData(AccessToken token,
string category):StoredMessage string description,
getStoredMessages():StoredMessageList string category,
isUsedByAnyPlan():boolean Message msg):void
isMessageUsedByAnyPlan(ldentifier msgID):boolean remove(AccessToken):void
removeMessage(AccessToken, StoredMessage):void
remove(AccessToken):void
1.* !
1
1
MessageLibraryList
Message
LibraryEventType StoredMessageData

LibraryAdded
LibraryRemoved
LibraryNameChanged
StoredMessageAdded
StoredMessageRemoved
StoredMessageChanged

Identifier msgiD
Identifier liblID

string description
string category
string lastModifiedBy
Message msg

validateMessageContent():void;

StoredMessageAddedEventinfo

StoredMessageRemovedEventinfo

LibraryAddedEventinfo

LibraryNameChangedEventinfo

StoredMessage storedMsg;;
StoredMessageData msgData;

Identifier msgIiD
Identifier liblID

Identifier id; Identifier id;
MessageLibrary lib; string name;
string name;

Figure 162. LibraryManagement (Class Diagram)

R1B2 Servers Detailed Design Rev. 0

3-248

04/17/01

3.16.1.11.1 LibraryAddedEventinfo (Class)
This struct defines data passed with a DMSLibraryAdded event.

3.16.1.11.2 LibraryEventType (Class)

This enum defines the types of events that can be pushed on a LibraryManagement event
channel.

3.16.1.11.3 LibraryNameChangedEventinfo (Class)

This struct defines data passed with a LibraryNameChanged event.

3.16.1.11.4 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

3.16.1.11.5 MessageLibrary (Class)

This class represents a logical collection of messages that are stored in the database.

3.16.1.11.6 MessageLibraryFactory (Class)

This class is used to create new message libraries and maintain them in a collection.

3.16.1.11.7 MessageLibraryList (Class)

A collection of MessageL.ibrary objects.

3.16.1.11.8 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains
attributes such as category and message description which are used to allow the user to
organize messages.

3.16.1.11.9 StoredMessageAddedEventinfo (Class)

This struct defines the data passed with a StoredMessageAdded event.

3.16.1.11.10 StoredMessageData (Class)

This structure defines the data stored in a StoredMessage.

3.16.1.11.11 StoredMessageL.ist (Class)

A collection of StoredMessage objects.

R1B2 Servers Detailed Design Rev. 0 3-249 04/17/01

3.16.1.11.12 StoredMessageRemovedEventinfo (Class)

This struct defines data passed with a StoredMessageRemoved event.

3.16.1.11.13 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure unigueness.

R1B2 Servers Detailed Design Rev. 0 3-250 04/17/01

3.16.1.12 LogCommon (Class Diagram)

This class diagram contains all interfaces that are necessary to multiple log types within the
CHART Il system.

Loglterator LogEntryDataList LogEntryData LogEntryList
ong neotLastse seqperce oggnpas | 1 1+ | TPl | | S Loy
getMoreEntries(long maxCount) : LogEntryList
destroy():void 1

1.+
LogFilter LogEntry

TimeStamp m_startDate
TimeStamp m_endDate
Identifier eventlD

string m_opCenterName
string m_containsText

TimeStamp m_timestamp
Identifier m_eventID

string m_text

string m_author

string m_opCenterName

factory createLogFilter() : LogFilter equals() : boolean

factory createLogEntry() : LogEntry
hashCode() : int
matchesFilter(LogFilter filter) : boolean

Figure 163. LogCommon (Class Diagram)

3.16.1.12.1 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general
Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic
Event actions (opening, closing, etc.) are logged in the Communications Log as well as in
the history of the specific Traffic Event.

3.16.1.12.2 LogEntryData (Class)

LogEntryData is a collection of data required to create one Log Entry, consisting of text
(the body of the event) and an ID that refers to a Traffic Event, if appropriate.

3.16.1.12.3 LogEntryDatalList (Class)

The LogEntryDataList is simply a sequence of LogEntryData objects, each of which
contain the data needed to create one Log Entry. Normally each LogEntryDataL.ist will
contain only one LogEntryData object, but if the CommLog service is unavailable for a
time, it is possible that multiple LogEntryData objects may be queued up for insertion into
the database.

R1B2 Servers Detailed Design Rev. 0 3-251 04/17/01

3.16.1.12.4 LogEntryList (Class)

The LogEntryList is simply a sequence of LogEntry instances returned to a requesting
process in one clump. (Some requests return so much data that data is returned in clumps.
The initial request returns a Loglterator from which additional LogEntryL.ist sequences can
be requested, in order to complete the entire query.

3.16.1.12.5 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the
Communications Log. The caller would create an object of this type specifying the criteria
that each log entry must match in order to be returned.

3.16.1.12.6 Loglterator (Class)

This class represents an iterator to iterate through a collection of log entries. If a retrieval
request results in more data than is reasonable to transmit all at once, one clump of entries
is returned at first, together with a Loglterator from which additional data can be requested,
repeatedly, until all entries are returned or the user cancels the operation.

R1B2 Servers Detailed Design Rev. 0 3-252 04/17/01

3.16.1.13

TrafficEventManagement (Class Diagram)

This class diagram contains all classes relating to Traffic Events

TrafficEventFactory ResponseParticipation
K N Data() : R i Data
getName() : string 2 5
createTrafficEvent(AccessToken token, SelNG"f'ed(A'g'(é‘;f‘sg;skggéghm‘ﬁed) void
lgra\asf?ccg/\g\r;g;lpaee(zgsl‘D ata overrideNotificationTime(Access Token token ,
LogEntry(] initialEntries): TrafficEvent remove(Acces sTokenI(I)Teer%[‘a\%?dnomm ationTime) : vold
getTrafficEvents(): TrafficEvent[] N
aneCor):LaneC
X | ResourceDeployment
OrganizationParticipation setArrivedOnScene(AccessToken token,
* boolean hasArrived) : void
setDepartedFromScene(AccessToken token,
TrafficEvent) o boolean hasDeparted) : void
setRespondedToEvent(AccessToken token, overrideArrivalTime(AccessToken token,
boolean hasResponded) : void imeStamp arrivalTime) : void
overrideRespondedTime(Access Token token, overrideDepartureTime(AccessToken token,
addLogEntry(Access Token token, TimeStamp respondedTime) : void TimeStampdepartureTime) : void
string text):void 1
addResponseParticipation(AccessToken token,
ResponseParticipationData rpdata):void
addResponseltem(AccessToken token,
ResponsePlanitemData rpid):void
e cEvent evetTcssocite ResponsePlantem N ResponsePlantembata
boolean primary): void '
removeEventAssociation(AccessToken token,
denifer a8sacaegEventb) oid getTargetiD() enifer gelTargetiD) denifer
Cha"ge-,-ypewcess-roken token, execute(Access Token token):void isExecutable() : boolean
icEventType newEventType) void 1 * setltemDala(AccessToken token, execute(AccessToken token,
close(AEcessTc\ken token):void > lantemData data):void TrafficEvent trafficEv,
isClosed(TimeStamp closureTme):boolean gell(emDala(AccessToken token):ResponsePlanitemData ommandStatus status):void
- © - isActive():boolean revokeExecution(AccessTiken token,
overrideClosureTime(AccessToken token, 1 1 fficEvent trafficEvt):void
TimeStamp closeTime);void hasBeenExecuted():boolean P rafficEvent trafficEvt):voi
executeResponse(Access Token token):void setActive(AccessToken token):void isUsingObiject(ldentifier[] objectiDs):boolean
gethssociatedEvents():identfier] - setinactive(AccessToken token):void eventTypeChanged(AccessToken token,
getHistory(LogFilter filter, getDescription():string TrafficEvent "EWT'aﬁ'CEVU void
long maxCount, setDescription(AccessToken token, eventTransferred(AccessToken token,
LogEntryl] enmes) Loglterator string description):void TrafficEvent newTrafficEvt):void
isPrimary():boolean eventTypeChanged(AccessToken token, A
setPrimary(AccessToken token):void TrafficEvent "EWT““‘“'CEV‘) void
setSecondary(AccessToken token):void eventTransferred(AccessToken token,
g): ticipation[] TrafficEvent newTrafficEvt,
getBasicEventData():BasicEventData kjenmler opCenteriD,
\g opCenterName):void
|sUslngObJecI(lden(lflerI] objectiDs):boolean ° ° °
remove(AccessToken token):void
RoadwayEvent DMSRPIData ‘ HARRPIData
LaneC
getLaneC ion():LaneConfi] 1 TrafficEventType
setLaneConfiguration(AccessToken token, Lane[] m_lanes
LaneConfiguration laneConfig) TYPE_PLANNED_ROADWAY_CLOSURE
getLanes():Lane[] TYPE_INCIDENT’
TYPE _DISABLED VEHICLE
7 TYPE WEATHER_SENSOR_ALERT
TYPE WEATHER_SERVICE_ALERT
TYPE_ACTION
TYPE_CONGESTIO
TYF’E RECURRING_(CONGESTION
TYPE_SAI
TYPE_SPECIAL_EVENT
WeatherServiceEvent DisabledVehicleEvent ActionEvent Safet;
LaneState
Lane
LANE_OPEN
LaneState m_currentState 1 1| LANE CLOSED
Dlrecllon m dlrectlonO'T ravel LANE_NOT_EXIST
hanged
Incident |0ng m fosevac\m Left
setVehicleData(Access Token token, Weather SensorEvent PlannedRoadwayClosure CongestionEvent
IncidentVehicleData vehic| IeDaba) void
selType(AccessTcken token, m_recurring
IncidentType type):void —
setRoadConditions(AccessToke token, R Ac ‘Token toke
IConditionsData roadConditions):void isRecurring(AccessTd ?(re‘ lng’,‘,)
Ove”'deﬁ‘ceglgfé%?‘szage(boolean isRecurring):void
long IaneOffselFrc\rr'lLefl Ramp Shoulder
TimeStamp timeOpenedOrClosed):void

Figure 164. TrafficEventManagement (Class Diagram)

R1B2 Servers Detailed Design Rev. 0

3-253

04/17/01

3.16.1.13.1 ActionEvent (Class)

This class models roadway events that require an operations center to take action but do not
fit well into the other event categories. An example of this type of event would be debris in
the roadway.

3.16.1.13.2 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of
the progress of an asynchronous operation. This is typically used by a GUI when field
communications are involved to complete a method call, allowing the GUI to show the user
the progress of the operation. The long running operation calls back to the CommandStatus
object periodically as the command is executed and makes a final call to the
CommandStatus when the operation has completed. The final call to the CommandStatus
from the long running operation indicates the success or failure of the command.

3.16.1.13.3 CongestionEvent (Class)

This class models roadway congestion that may be tagged as recurring or non-recurring
through the use of an attribute.

3.16.1.13.4 DisabledVehicleEvent (Class)

This class models disabled vehicles on the roadway.

3.16.1.13.5 DMSRPIData (Class)

The DMSRPIData class is an abstract class that describes a response plan item for a DMS.
It contains the unique identifier of the DMS to contain the DMSMessage, and the
DMSMessage itself.

3.16.1.13.6 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a
command to put a message on a HAR when executed. When the item is executed, it adds
the message to the arbitration queue of the specified HAR. When the item is removed from
the response plan (manually or implicitly through closing the traffic event) the item asks the
HAR’s arbitration queue to remove the message.

3.16.1.13.7 Incident (Class)

This class models objects representing roadway incidents. An incident typically involves
one or more vehicles and roadway lane closures.

3.16.1.13.8 Lane (Class)

This class represents a single traffic lane at the scene of a RoadwayEvent.

R1B2 Servers Detailed Design Rev. 0 3-254 04/17/01

3.16.1.13.9 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

3.16.1.13.10 LaneState (Class)

This enumeration lists the possible states that a traffic lane may be in.

3.16.1.13.11 OrganizationParticipation (Class)

This class is used to manage the data captured when an operator notifies another
organization of a traffic event.

3.16.1.13.12 PlannedRoadwayClosure (Class)

This class models planned roadway closures such as road construction. This interface will
be expanded in future releases to include interfacing with the EORS system.

3.16.1.13.13 Ramp (Class)

This class represents a ramp type traffic lane.

3.16.1.13.14 ResponseParticipation (Class)

This interface represents the involvement of one particular resource or organization in
response to a particular traffic event.

3.16.1.13.15 ResponsePlanltem (Class)

Objects of this type can be executed as part of a traffic event response plan. A
ResponsePlanltem can be executed by an operator, at which time it becomes the
responsibility of the System to activate the item on the ResponseDevice as soon as it is
appropriate.

3.16.1.13.16 ResponsePlanltemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan
item. Derived classes of this base class have specific implementations for the type of device
the response plan item is used to control.

3.16.1.13.17 ResourceDeployment (Class)

This class is used to store the data captured when an operator deploys resources to the scene
of a traffic event.

3.16.1.13.18 RoadwayEvent (Class)

This class models any type of incident that can occur on a roadway. This point in the
heirarchy provides a break off point for traffic event types that pertain to other modals.

R1B2 Servers Detailed Design Rev. 0 3-255 04/17/01

3.16.1.13.19 SafetyMessageEvent (Class)

This type of event is created by an operator when he/she would like to send a safety
message to a device.

3.16.1.13.20 Shoulder (Class)

This class represents a shoulder type traffic lane.

3.16.1.13.21 SpecialEvent (Class)

This class models special events that affect roadway conditions such as a concert or
professional sporting event.

3.16.1.13.22 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

3.16.1.13.23 TrafficEventFactory (Class)

This interface is supported by objects that are capable of creating traffic event objects in the
system.

3.16.1.13.24 TrafficEventType (Class)

This enum defines the types of traffic events that are supported by the system.

3.16.1.13.25 WeatherSensorEvent (Class)

This class models roadway weather events such as snow or fog that are reported by the
system’s weather monitoring devices. Operators will need to manually enter the
information in these events for this release. In future releases, these events will be
automatically generated by the system.

3.16.1.13.26 WeatherServiceEvent (Class)

This class models roadway weather events such as snow or fog that are manually entered by
an operator in response to receiving an alert from the national weather service.

R1B2 Servers Detailed Design Rev. 0 3-256 04/17/01

3.16.1.14

IncidentType

TYPE_COLLISION

TrafficEventManagement2 (Class Diagram)

BasicEventData

stringm_locationDesc

Direction m_direction

string m_source

string m_county

string m_description

booleanm _isSceneCleared
TimeStamp m_sceneClearedTime
boolean m_isDelayClear
TimeStamp m_delayClearedTime
boolean m_isConfirmed
TimeStamp m_confirmedTime
boolean m_isFalseAlarm

boolean m_isClosed

TimeStamp m_closedTime

long m_maxQueueLength
Identifier m_controlingOpCenterlD
string m_controlingOpCenterName

isValidForOpeningEvent(:boolean

ResponseParticipationData

Identifier m_participationiD
ResponseParticipant m_participant
boolean m_notified

TimeStamp m_timeNotified

ResponseParticipant

>~ stringm_nam

RsspnnssPamclpaanyps m_type

ResourceDeploymentData

boolean m_arrived
TimeStamp m_timeArrived
boolean m_departed
TimeStamp m_timeDeparted

OrganizationParticipationData

boolean m_responde
TimeStamp m tlmeResponded

RoadConditionsData 1 IncidentData ActionEventData P
boolean wet 1 1| IncidentType m_incidentType
boolean rain RoadConditionsData m_roadConditions Dog A SOl Roadh sttg m agStateOfissue
boolean fog IncidentVehicleData m_vehicleData. nﬁZ\SZS E*m?m{}s inRoadway string m_tagNut
boolean iceOrSnow e m boolean m,ﬂﬁg;apgs
string m, omerDescnpuon B !
1 boolean m_gas
boolean m_directions
boolean m_ownDisposition
boolean m callForService
boolean m_goneOnArriv
IncidentVehicleData booleon M- Sbandonetvanicie
boolean m_relayOperator
pronncasnoed,, e
0 string m_otherDescription
long numPickupVanSuvs involved 9m d
long numPickupVanSuvsOverturned | 1
long numSingleUni
long numSingleUnitTrucksOverturned
long numSingleUnitTrucksLostLoad
long numTractorTrailersinvolved
long numTractorTrailersOverturned
long numTractorTrailersLostLoad
long num TractorTrailers JackKnifed
long numMotorcyclesinvolved
TrafficEventEventType T T p p p Jpdate
ActionEventAdded TrafficEvent theTrafficEvent entfier raffcEventAD Identifier trafficEventiD Identifier trafficEventiD Identifier plankemiD
CongestionEventAdded Data Data Identifier Identifier planitemID Identifier participationiD ResponsePlanitemStatus planitemStatus
DisabledVehicleEventAdded string
HistoryLogEntriesAdded ResponsePlanitem plantem
IncidentAdded po Data plantemData
LaneConfigurationChanged
OrganizationParticipationAdded
org hange«
"ﬂ'”c'i’a""”“s’““"e" LogEntriesAdded LaneConfigurationChangedinfo D
R DeploymentAdded
Esﬁ:‘.iisre"”y'”e e dentifier D Identifier eventiD D Identiier D string lastknownState
ResponsePlanfemadded LogEntry] logEntries LaneC newC poi Data Data boolean isActive
ResponsePlantemModified Identifier trafficEventiD boolean
ResponsePlantemRemoved \dentifierf] plankemiDs
ResponsePlanStatusChanged
SafetyEventAdded
SpecialEventAd
TrafficEventAssociated
T T TrafficEventTypeChangedinfo
TrafficEventClosed
TrafficventDeleted Identifier primaryEventiD Identifier eventiD
T angy TrafficEvent pnmaryEvent TrafficEvent newTrafficEvent ResponseParticipationAddedinfo ResponsePlanStatusChangedinfo
e e Identifier Data newEventData
WeatherSensorEvent/dde dentiier D dentfer trafficEventD
WeatherServiceEventAdded po Data Data Resp Jpdate]] ist
P P

Figure 165. TrafficEventManagement2 (Class Diagram)

3.16.1.14.1 ActionEventData (Class)

This class represents all data specific to an Action event type traffic event.

3.16.1.14.2 BasicEventData (Class)

This class represents the data common to all traffic events. All derived data types will
inherit all data shown in this class.

R1B2 Servers Detailed Design Rev. 0 3-257 04/17/01

3.16.1.14.3 DisabledVehicleData (Class)

This class represents all data specific to a disabled vehicle traffic event.

3.16.1.14.4 IncidentData (Class)

This class represents data specific to an Incident type traffic event.

3.16.1.14.5 IncidentType (Class)

This enumeration lists all possible incident types.

3.16.1.14.6 IncidentVehicleData (Class)

This class represents the vehicles involved data for incidents. Its purpose is to simplify the
exchange of data between GUI and server.

3.16.1.14.7 LaneConfigurationChangedInfo (Class)

This structure contains the data that is broadcast when the lane configuration of a traffic
event is changed.

3.16.1.14.8 LogEntriesAdded (Class)
This structure contains the data that is broadcast when new entries are added to the event
history log of a traffic event.

3.16.1.14.9 OrganizationParticipationData (Class)

This class represents the data required to describe an organization’s participation in the
response to a traffic event.

3.16.1.14.10 ResourceDeploymentData (Class)

This class represents the data required to describe a resource’s participation in the response
to a traffic event.

3.16.1.14.11 ResponseParticipant (Class)

The ResponseParticipant class is a non-behavioral structure that specifies a participant in a
response.

3.16.1.14.12 ResponseParticipationData (Class)

This class contains all data pertinent to any class that represents a response participation.

3.16.1.14.13 ResponsePlanltemStatus (Class)

This stucture contains data that describes the current state of a response plan item.

R1B2 Servers Detailed Design Rev. 0 3-258 04/17/01

3.16.1.14.14 ResponsePlanStatusChangedinfo (Class)

This structure contains the data that is broadcast when one or more response plan items in
the response plan of a traffic event change state.

3.16.1.14.15 RoadConditionsData (Class)

This class represents the data necessary to describe the road conditions at the scene of a
traffic event.

3.16.1.14.16 ResponseParticipationAddedInfo (Class)

This structure contains the data that is broadcast when a response participant is added to the
response to a particular traffic event.

3.16.1.14.17 ResponseParticipationRemovedInfo (Class)

This structure contains the data that is broadcast when one or more response plan items are
removed from a traffic event.

3.16.1.14.18 ResponseParticipationChangedInfo (Class)

This structure contains the data pushed in a CORBA event any time any type of response
participation object changes state.

3.16.1.14.19 ResponsePlanltemInfo (Class)

This structure contains the data that is broadcast any time a new response plan item is added
or an existing response plan item is modified.

3.16.1.14.20 ResponsePlanltemsRemovedinfo (Class)

This structure contains the data that is broadcast when one or more response plan items are
removed from a traffic event.

3.16.1.14.21 ResponsePlanltemStatusUpdate (Class)

This structure contains data that describes a status change to a particular response plan item.

3.16.1.14.22 TrafficEventAddedInfo (Class)

This structure contains the data that is broadcast when a new traffic event is added to the
system.

3.16.1.14.23 TrafficEventAssociatedInfo (Class)

This structure contains the data that is broadcast when two traffic events are associated.

R1B2 Servers Detailed Design Rev. 0 3-259 04/17/01

3.16.1.14.24 TrafficEventAssociationRemovedInfo (Class)

This structure contains the data that is broadcast when the association between two traffic
events is removed.

3.16.1.14.25 TrafficEventEventType (Class)

This enumeration defines the types of CORBA events that can be broadcast on a Traffic
Event related CORBA Event channel.

3.16.1.14.26 TrafficEventTypeChangedInfo (Class)

This structure contains the data that is broadcast when a traffic event changes types. The
traffic event object that represented the traffic event previously is removed from the system
and is replaced by the newTrafficEvent reference contained in this structure. If the
consumer of this CORBA event has stored any references to the traffic event previously,
those references should be replaced with this new reference.

R1B2 Servers Detailed Design Rev. 0 3-260 04/17/01

3.16.1.15

UserManagement (Class Diagram)

This class diagram contains the interfaces necessary to manage and utilize user profiles.

UserManager

ping():void

createUser(AccessToken token,UserName,Password):void
deleteUser(AccessToken,UserName):void 1 1
getUsers(AccessToken):UserList

getRoles(AccessToken):RoleList
getUserRoles(AccessToken,UserName):RoleList
getRoleFunctionalRights(Access Token,RoleName):FunctionalRightList
setRoleFunctionalRights(AccessToken,RoleName, FunctionalRightList):void
createRole(AccessToken, Role):void
deleteRole(AccessToken,RoleName):void
changeUserPassword(AccessToken, UserName,Password,Password):void
setUserRoles(AccessToken, UserName, RoleList):void
grantRole(AccessToken, UserName,RoleName):void
revokeRole(AccessToken,UserName,RoleName):void
setUserPassword(AccessToken, UserName,Password):void

getSystemProfile():Profile
getUserProfile(AccessToken,UserName):Profile

Profile

setProfileProperties(AccessToken, ProfilePropertyList):void
deleteProfileProperty(Access Token,ProfileProperties):void
getProfileProperties():ProfilePropertyList

ProfilePropertyList

ProfileProperty

UserName Role
description
name

1 1

UserList RoleList

FunctionalRight

id
orgFilter

1

*| key

value

FunctionalRightList

Figure 166. UserManagement (Class Diagram)

3.16.1.15.1 FunctionalRight (Class)

A functional right epresents a particular user capability. A functional right grants a
particular capability to perform system functions. Each functional right may be limited by
attaching the identifier of a particular organization to which this right is constrained. This

capability allows an administrator to grant a particular Role the ability to modify only

shared resources owned by the identified organization. The orgFilter identifier CHART?2

will allow access to any organizations shared resources.

R1B2 Servers Detailed Design Rev. 0 3-261

04/17/01

3.16.1.15.2 FunctionalRightList (Class)

A list of functional rights.

3.16.1.15.3 Profile (Class)

This class contains a set of user or administrator defined properties that are used to
configure how the CHART Il system behaves or presents information to a user.

3.16.1.15.4 ProfilePropertyList (Class)

A list of profile properties.

3.16.1.15.5 ProfileProperty (Class)

This class represents a key value pair that can be used to store system properties in the
system database.

3.16.1.15.6 Role (Class)

A Role is a collection of functional rights. A Role can be granted to a user, thus granting the
user all functional rights contained within the role.

3.16.1.15.7 RoleList (Class)

This structure contains a list of roles.

3.16.1.15.8 UserList (Class)

A list of user names.

3.16.1.15.9 UserName (Class)

This typedef defines the type of UserName fields used in system interfaces.

3.16.1.15.10 UserManager (Class)

The UserManager provides access to data dealing with user management. This includes
users, roles, and functional rights. The UserManager is largely an interface to the User
Management database tables.

R1B2 Servers Detailed Design Rev. 0 3-262 04/17/01

3.17 TrafficEventModule

3.17.1 Classes

3.17.1.1 TrafficEventHierarchy (Class Diagram)

This diagram depicts the relationships between Traffic event related interfaces and their
implementing classes. It does not show all possible traffic event types. Instead it shows a
few of the many possible types for illustrative purposes. The main point of the diagram is to
show that each TrafficEvent implementation object implements the corresponding CORBA
interface and derives from the implementation object that implements its corresponding
interface’s parent interface.

01| {aneconfiguration Lane

1 .
L g LaneState m_currentState
Lane(] m_lanes Direction m_directionOfTravel
1 TimeStamp m_timeStateChanged
getLanes():Lane[] long m_offsetFromLeft

TrafficEventGroup

m _locationDesc
m_source
m_county TrafficEventimpl
m_description 1 1
m_sceneCleared

m:sceneclearedTlme m_tpe
m_delayCleared T Traffi Traffi DB)
m di'a‘)’c‘eafe‘l”'me getEventGroup():TrafficEventGroup
m_isFalseAlarm initializeFromimpl(TrafficEventimpi)

m \'saléoeﬁllﬁ'mmeyme getDB(): TrafficEventDB

m_isClosed
m_confirmedTime
m_openedTime
m_closedTime

m_controllingOpCenteriD DisabledVehicleData
m ccnlrol\lngOpCentevName
m_maxQueueLen string m_tagStateOfissue RoadwayEventimpl
TrafﬂcEventhdule m _module string m_tagNumber
booleanm tireChange
TrafficEventGroup(TrafficEventModule, DatabaselLogger) boolean m_hotShot
getCurrentEvent() boolean m_water setLaneC aneC
addLogEntry() boolean m_gas
w " Data) boolean m”directions N
p boolean m_ownDisposition RoadConditionsData
executeResponse(items) boolean m_callForService
getAssociatedEvents() boolean m_goneOnArrival
ggldBRaswEvemPDala() ") goo}ean m pandonedy i
esponseParticipation(type, name; oolean m_relayOperator
removeResponseParticipation() boolean m_other SafetyMessageEventimpl SpecialEventimpl
gelRegponseParticwpaticns() string m_otherDescription |

boolean wet
boolean rain
boolean fof

boolean iceOrSnow

isClosed()
getClosureTime())
associateEvent(token, trafficEvent, isPrimary) 1
changeEventType()
takeOffiine()

SpecialEventmpl() 1

getHistory(maxCount)
getHistory(filter, maxCount)
getCurrentTrafficEvent(): TrafficEventimpl 1
getModule(): Tvangven}Modul

Ol

g DisabledVehi c i Impl

i
|n|t|ahze(Serv|ceApphcatlcn DatabaseLogger, TrafficEventDB, logEntries) dentTs 1
createTraffic| Evenl((ypecod) m_recurring m_incidentType |- ong numCarsinvolved
isPrimary():boolear
setPi nmary(boo\ean |sanarv) D 0 c 0 Incidentmpl0 ERS gamggfgﬁﬁgﬁgnmlwd
createT ode): Tl
getT; ode):Tr long numPickupVanSuvsOverturned
monitorResponses() long numSingleUnitTruckslInvolved
responsePlanttemChanged(itemD) WeatherServiceEventimpl o P ool
getControllingOpCenter():identifier
setControlingOpCenter(opCenteriD, opCenterName) WeatherSensarEventimpl }ggg numTractortralersivoved
:;:ggg:;gggzﬁ;:;wdateo long numTractorTrailersLostLoad

) long numTractorTrailersJackKnifed
) long numMotorcyclesinvolved

[

i IncidentvehicleData

PlannedRoadwayClosureEventimpl

ActionEventimpl

PlannedRoadwayClosureEventimpl()

0 Data

boolean m_signal
boolean m_debrisinRoadway
boolean m_utility

boolean m_other

string m_otherDescription

Figure 167. TrafficEventHierarchy (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-263 04/17/01

3.17.1.1.1 ActionEventData (Class)

This class represents all data specific to an Action event type traffic event.

3.17.1.1.2 ActionEventimpl (Class)

This class provides an implementation of the ActionEvent interface. Each ActionEventimpl
contains a reference to a ActionEventData describing the event.

3.17.1.1.3 CongestionEventlmpl (Class)

This class provides an implementation of the CongestionEvent interface. This contains the
state variable to indicate if the event is a recurring event.

3.17.1.1.4 DisabledVehicleData (Class)

This class represents all data specific to a disabled vehicle traffic event.

3.17.1.1.5 DisabledVehiclelImpl (Class)

This class provides an implementation of the DisabledVehicleEvent interface. Each
DisableVehicleEventImpl contains a reference to DisabledVehicleData that describes the
disabled vehicle details at the scene.

3.17.1.1.6 Incidentimpl (Class)

This class provides an implementation of the Incident interface. It contains state variables
and processing that are unique to incident type traffic events.

3.17.1.1.7 IncidentVehicleData (Class)

This class represents the vehicles involved data for incidents. Its purpose is to simplify the
exchange of data between GUI and server.

3.17.1.1.8 Lane (Class)

This class represents a single traffic lane at the scene of a RoadwayEvent.

3.17.1.1.9 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

3.17.1.1.10 PlannedRoadwayClosureEventimpl (Class)

This class provides an implementation of the PlannedRoadwayClosureEvent interface.

R1B2 Servers Detailed Design Rev. 0 3-264 04/17/01

3.17.1.1.11 RoadConditionsData (Class)

This class represents the data necessary to describe the road conditions at the scene of a
traffic event.

3.17.1.1.12 RoadwayEventimpl (Class)

This class provides an implementation of the RoadwayEvent interface. Each
RoadwayEventimpl contains a reference to a LaneConfiguration that describes the lanes at
the scene of the event.

3.17.1.1.13 SafetyMessageEventimpl (Class)

This class provides an implementation of the SafetyMessageEvent interface.

3.17.1.1.14 SpecialEventimpl (Class)

This class provides an implementation of the SpecialEvent interface.

3.17.1.1.15 TrafficEventimpl (Class)

This class provides an implementation of the TrafficEvent interface. It contains state
variables and processing that common to all traffic events.

3.17.1.1.16 TrafficEventGroup (Class)

This class is used to group together different TrafficEvent objects that all represent the
same traffic event that an operations center is working. A particular traffic event may
initially be created as a particular type of event such as DisabledVehicleEvent and later be
converted to another type of event such as Incident. The group stores all information that is
common to all of these TrafficEvent objects that represent the same roadway event.

3.17.1.1.17 WeatherSensorEventimpl (Class)

This class provides an implementation of the WeatherSensorEvent interface.

3.17.1.1.18 WeatherServiceEventimpl (Class)

This class provides an implementation of the WeatherServiceEvent interface.

R1B2 Servers Detailed Design Rev. 0 3-265 04/17/01

3.17.1.2 TrafficEventModuleClasses (Class Diagram)

This diagram shows traffic event related classes and interfaces.

SharedResourceManager

TrafficEventFactory

getName() : string

TrafficEventModuleProperties

ServiceApplicationModule

getOffineThresholdHours)it

ResourceMonitorThread

ResourceMonitorThread(factoryimpl)
shutdown()

1

mpI(Tr
offlineThresholdHours)
utdown()

:
Respomsevanorvess | memeisonces0

monitorResponses ()

~getControllingOpCenters():identifier]]
-getOpCenterRef(opCenteriD) OperationsCenter

-
shutdown() 1

TrafficEventGroup

Databaselogger

DatabaseL ogger(ableName)

addEntry(logEntry)

qe(Enlnes(()ﬂ\ler maxCount)
n

.

stores

m_locationDesc
m_source

c
m_description
m_sceneCleared
m_sceneClearedTime
m_delayCleared

m de\ayc\earedT\me
m_isFalse/

mJaIseAIarmT\me
m_isConfirmed

m_isClosed
m_confirmedTime
m_openedTime
m_closedTime
m_controllingOpCenteriD
m_controllingOpCenterName
m_maxQueuelLength
TrafficEventModule m_module

TrafficEventGroup(TrafficEventModule, DatabaseLogger)
getCurrentEvent()
addLogEntry()

D Data)

executeResponse(items)
getAssociatedEvents()
getBasicEventData()
addResponseParticipation(type, name)
removeResponseParticipation()
gelReg ponseParticipations()

isClosed()
getClosureTime()

assocwaleEvem(lcken trafficEvent, isPrimary)
changeEventType()

lakeOfﬂlne()

getHistory(maxCount)

getHistory(ilter, maxCount)
getCurrentTrafficEvent(): TrafficEventimpl
getModule():TrafficEventModule

g Objects()

g). I

initialize(ServiceApplication, DatabaseLogger, TrafficEventDB, logEntries)

createTrafficEvent(typeCode)

isPrimary():boolean

setPrimary(boolean isPrimary)
ode):Tr

ode):Ti

1Tl
monitorResponses()
responsePlanitemChanged(itemID)
getControlingOpCenter():identifier
setControllingOpCenter(opCenterID, opCenterName)
-sendResponseStatusUpdate()
-associationRemoved()

history in

createTrafficEvent(AccessToken token,
rafficEventType type, S gint
BasicEventData eventData, 1 9¢! !
LogEntry(] initialEntries): TrafficEvent
getTrafficEvents():TrafficEvent] A PushEventSupplier
aneC):LaneC: i 1 *| commLog TrafficEventDB
TrafficEventModule DBConnectionManager m_db
1
H Traffi DB(DBCH)
etSeniceApn() ServiceAppication T 1 | getTrafficE venis(:TratficEventGroupl
) e D,
L | getDB():TrafficEventdB P P > P an
getProp: 2 P -
ggtPOA(())POA LogData e) i D)
D
| i getTradngRegister):CosTradngRegster | | "sying m text updateEventSta 28 o
i getTradinglookup() ?isT'a(dQﬂ Lookp l&—| bytell token marktemForRemoval(trafficEventD, p\amlem\D)
Tr Impl addc 0 m mLogs(C A mLogE) eventiD) Identifier eventiD setitemActive(trafficEventlD, planitemID, isActive)
- D,
TrafficEventModule m_module Storelogbata(l ogData) D po i P Eveouted,isActive)
Ve ule m_module; -getLogData():LogData setLaneCi
recordLaneStateChange(trafficEventiD, laneOffset, newState)
1 overrideLaneStateChangeTime(trafficEventiD, \aneoﬂset userTime)

setEventPrimary(trafficEventiD, isPrimary)

D, orgf

Data)
D. D)

addOrg
removeOrg

ID, resourceD
ID.

Data)

takeEventOffiine(trafficEventiD);
aneConfi i):

aneC

LaneConfiguration

Lanef] m_lanes

getLanes():Lane]]

RoadwayEventimpl

0.1

ResourceDeploymentimpl

incidentimpl

m_resourceName
m_timeNotified
m_arrived
m_timeArrived

m_dey
m_timeDeparted

m_incidentType

Incidentimpl()

ResourceD

T
ResourceDeploymentData)

. ResponseParticipation

1

1 *
.—‘ ResponsePlanitem }

Data

g i Data() D
selthllled(AcceSSToken token,
in hasBeenNotified) : void
overndeNouﬂcaﬂonT\me(AccessToken token
imeStamp nuuﬁcauunTlme) void
remove(AccessToken lcken) void

\V/
ResourceDeployment

OrganizationParticipation

- D‘ CommandsStatus

OrganizationParticipationimpl

ResponsePlanitemimpl

m_organizationName
m_notified
m_timeNotified
m_responded
m_timeResponded

m_isActive
m_hasExecuted
m_lastkKnownState
m_remove

- - p
OrganizationParticipationData)

D T
getLastKnownState():String
-setExecuted(boolean)

Data)

g ResponsePlanitemData

Figure 168. TrafficEventModuleClasses (Class Diagram)

R1B2 Servers Detailed Design Rev. 0

3-266

04/17/01

3.17.1.2.1 CommLog (Class)

This class manages log entries. These can be general Communications Log entries or
specific log entries for a specific Traffic Event. This class is the primary interface for the
CommLog service. It is used to persist log entries in the CHART Il system and retrieve
them for review. Log entries can be created directly by users or indirectly as a result of
manipulating Traffic Events.

3.17.1.2.2 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of
the progress of an asynchronous operation. This is typically used by a GUI when field
communications are involved to complete a method call, allowing the GUI to show the user
the progress of the operation. The long running operation calls back to the CommandStatus
object periodically as the command is executed and makes a final call to the
CommandStatus when the operation has completed. The final call to the CommandStatus
from the long running operation indicates the success or failure of the command.

3.17.1.2.3 DatabaselLogger (Class)

This class represents a generic database logger that can be used to log and retrieve
information from the database. This class also provides a mechanism for the user to filter
and retrieve logs that meet specific criteria.

3.17.1.2.4 Incident (Class)

This class models objects representing roadway incidents. An incident typically involves
one or more vehicles and roadway lane closures.

3.17.1.2.5 java.lang.Thread (Class)

This class represents a java thread of execution.

3.17.1.2.6 Incidentimpl (Class)

This class provides an implementation of the Incident interface. It contains state variables
and processing that are unique to incident type traffic events.

3.17.1.2.7 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

R1B2 Servers Detailed Design Rev. 0 3-267 04/17/01

3.17.1.2.8 LogData (Class)

3.17.1.2.9 OrganizationParticipation (Class)

This class is used to manage the data captured when an operator notifies another
organization of a traffic event.

This class maintains a mapping between text messages and the corresponding audio clip file
information. This is accomplished by maintaining a list of TreeMaps (one for each audio
format supported) with text as key and audio clip information as the value. This class also
helps manage the amount of hard drive space consumed by the audio clips by deleting the
old clip files when the maximum cache size limit is reached. The maximum cache size limit
can be set by the administrator using the system properties.

3.17.1.2.10 OrganizationParticipationimpl (Class)

This class provides an implementation of the OrganizationParticipation interface. Each
instance represents a particular organization’s participation activities in response to a
particular traffic event.

3.17.1.2.11 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

3.17.1.2.12 ResponsePlanitem (Class)

Obijects of this type can be executed as part of a traffic event response plan. A
ResponsePlanltem can be executed by an operator, at which time it becomes the
responsibility of the System to activate the item on the ResponseDevice as soon as it is
appropriate.

3.17.1.2.13 ResponsePlanitemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan
item. Derived classes of this base class have specific implementations for the type of device
the response plan item is used to control.

R1B2 Servers Detailed Design Rev. 0 3-268 04/17/01

3.17.1.2.14 ResponsePlanltemImpl (Class)

This class provides an implementation of the ResponsePlanltem interface. Each instance
represents one particular part of a response plan that can be in an executed, active or
inactive state. This class also provides an implementation of the CommandStatus interface.
This implies that devices that are activated on behalf of this traffic event can hold a copy of
this object and call its update() method to provide a running status of the plan item as it
changes.

3.17.1.2.15 ResourceDeployment (Class)

This class is used to store the data captured when an operator deploys resources to the scene
of a traffic event.

3.17.1.2.16 ResourceDeploymentimpl (Class)

This class provides an implementation of the ResourceDeployment interface. Each instance
represents a resource that has been deployed to the scene of a traffic event. This class
contains the state data that describes the resource’s involvement in the traffic event.

3.17.1.2.17 ResourceMonitorThread (Class)

This thread will periodically call the traffic event factory implementation object and force it
to monitor its shared resources.

3.17.1.2.18 ResponseMonitorThread (Class)

This thread will periodically call the traffic event factory implementation object and force it
to notify each traffic event to monitor its response plan items for status changes.

3.17.1.2.19 ResponseParticipation (Class)

This interface represents the involvement of one particular resource or organization in
response to a particular traffic event.

3.17.1.2.20 RoadwayEvent (Class)

This class models any type of incident that can occur on a roadway. This point in the
heirarchy provides a break off point for traffic event types that pertain to other modals.

3.17.1.2.21 RoadwayEventimpl (Class)

This class provides an implementation of the RoadwayEvent interface. Each
RoadwayEventimpl contains a reference to a LaneConfiguration that describes the lanes at
the scene of the event.

R1B2 Servers Detailed Design Rev. 0 3-269 04/17/01

3.17.1.2.22 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.17.1.2.23 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.17.1.2.24 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.17.1.2.25 TrafficEvent (Class)
Obijects of this type represent traffic events that require action from system operators.
3.17.1.2.26 TrafficEventDB (Class)

This class provides an interface for the traffic event module to utilize the database. The
interface provides methods needed to store and retrieve TrafficEvent related information.

3.17.1.2.27 TrafficEventFactory (Class)

This interface is supported by objects that are capable of creating traffic event objects in the
system.

3.17.1.2.28 TrafficEventFactorylmpl (Class)

This class is capable of creating a new TrafficEvent object in the system. Additionally, it
acts as a manager of existing traffic event objects by performing calls on all traffic event
objects such as shared resource or response plan monitoring.

R1B2 Servers Detailed Design Rev. 0 3-270 04/17/01

3.17.1.2.29 TrafficEventGroup (Class)

This class is used to group together different TrafficEvent objects that all represent the
same traffic event that an operations center is working. A particular traffic event may
initially be created as a particular type of event such as DisabledVehicleEvent and later be
converted to another type of event such as Incident. The group stores all information that is
common to all of these TrafficEvent objects that represent the same roadway event.

3.17.1.2.30 TrafficEventModule (Class)

This class provides the resources and support functionality necessary to serve traffic event
related objects in a service application. It implements the ServiceApplicationModule
interface that allows it to be served from any ServiceApplication.

3.17.1.2.31 TrafficEventModuleProperties (Class)

This class provides operations for getting values in the service’s java properties file.

R1B2 Servers Detailed Design Rev. 0 3-271 04/17/01

3.17.2 Sequence Diagrams

3.17.2.1 TrafficEventModule:AddCommLogEntry (Sequence Diagram)

When a traffic event is opened, closed, or it changes types, it needs to add an entry to the
communications log. This diagram depicts the fault tolerance built into this operation.
When the TrafficEventModule is called to add an entry to the communications log, it will
check if it has any cached entries that need to be added. These cached entries would be the
result of prior calls that were not successful. If there are cached entries, the module will
attempt to add them to the last communications log that was successfully used. If this is the
first attempted use of a communications log or the attempt to use the last communications
log fails, the module will search the trading service for all known communications logs.
Each of these logs will be stored for future use. The module will then begin attempting to
log all cached log data to each of the discovered communications logs until there are no
more communications logs to try, or there are no more entries to log. If all communications
logs are tried and the entry still could not be logged, the entry will be added to the cache
and this process will repeat again the next time a comm log entry is attempted.

that could not be added previously. If
there are they should be logged first.

X

Check if there are any log entries ﬁ

that was successfully used.

Attempt to add the entry to the last CommLog ﬁ

TrafficEvent @w Commlog CosTrading.Register
—addCommLogEntry—
1
p getLogData
[while more i
log data
and no exceptions] addEntry

,, [Exception caught]
query "CommLog objects”

[exception caught]
addCommLogs

!

[* while more [while 1
comm logs and more log getLogData
not successful] data] —

addEntry

L

[unable to
log entry|——> LogData
storeLogData

Figure 169. TrafficEventModule:AddCommLogEntry (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-272 04/17/01

3.17.2.2 TrafficEventModule:AddLogEntry (Sequence Diagram)

This diagram shows how an entry is added to a traffic event’s history log. The
TrafficEventimpl is called to add the log entry, and after checking the user’s rights, it calls
the TrafficEventGroup to add the entry. The TrafficEventGroup creates a new LogEntry
and calls the DatabaselLogger to add the entry to the database. A CORBA event is then
pushed through the event service, to update all of the GUIs with the new entry.

o
TrafficEventimpl | | TokenManipulator TrafficEventGroup Databaselogger TrafficEventModule Databaselogger OperationsLog
ORB
[——addLogEnty —checkAccess—>
[no rights]
- [no rights]___ log "Invalid access attempt
AccessDenied addLogEntry
getUserName——
i<—getOpCenterName—;
F—creats LogEntry

addEntr

getPushSupplier

pus h(HislbryLogEmriesAdded;

Figure 170. TrafficEventModule:AddLogEntry (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-273 04/17/01

3.17.2.3 TrafficEventModule:AddResponseltem (Sequence Diagram)

This diagram shows how a response item is added to a traffic event’s response plan. The
items can either be executable or non-executable (i.e., a placeholder containing only a
target). The TrafficEvenlmpl is called to add the ResponsePlanltem. After checking the
user’s rights, it calls the TrafficEventGroup to add the item. The TrafficEventGroup checks
for existing ResponsePlanltems with the same target as the item being added. If an existing
item is found and the new item is not executable, the new item is ignored. If an existing
item is found and the new item is executable, the group sets the data in the existing
ResponsePlanltem, which will overwrite the old data and cause the item’s state to be “not
executed” if it is already executed (see the sequence diagram
SetMessageForUselnResponsePlan for details). Otherwise, if there was not already an
existing item, a new ResponsePlanltemIimpl is created, added to the database, and activated.
A CORBA event is pushed to the event service to inform the GUIs of the new item, and
entries are added to the traffic event’s history log and the operations log.

Trafffic Traffic
T | T T ResponsePlanitem Evénitodule EveniDB || PushEventsupplier | | DatabaseLogger OperationsLog POA ‘
oRr8
L feventclosed]
CHART2ExC
Lo no rights]____ log “Invalid access attempt’
AecessDeniéd ™ —getOpCenterip—3| T e e o et
inot from controling op the new response plan item
e,,,,lcenler and no override__| is targeting the same object @.ﬂ%’f{féﬁ&“&ﬂe \te}m‘h
as an existing item !
ResourcetntoiConfict g | an execuiable item because
e the execttable item has
. —getTargetn™—> | data that should not be
Resporaeaenterm] gettar implicity discarded. This
peration will be ignored.

fitem with matching _tem with matching target already in plan. """
| . target already in plan and new item not executable]
n

em not [item with matching If an executable item

executable] target in plan and is being added, the new
F—new item is—=...__ item's data will overwrite
executablel e the old data and the item
Data called] setitemData R will be set to "not executed".
[&——[setitemData called}— T — See the diagram:
fitem with matching - —
F——target not in plan} ResponsePlanttemimpl for details
create
getDB

activate_object

addLogEntry

og “item added to response plan”

Figure 171. TrafficEventModule:AddResponseltem (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-274 04/17/01

3.17.2.4 TrafficEventModule:AddResponseParticipation (Sequence Diagram)

This diagram shows how a response participation is added to a traffic event. The
TrafficEventlmpl is called to add the response participation, and after checking the user’s
rights, calls the TrafficEventGroup to add the response participation. The
TrafficEventGroup creates a new OrganizationParticipationImpl or a
ResourceDeploymentimpl, then adds it to the database, activates the object to receive
CORBA calls, and pushes a CORBA event through the event service so that all of the GUIs
will be updated. An entry is also added to the traffic event’s history log.

py

TrafficEventimpl I

rafficEventGroup raffic EventModule ushEventSupplier perationsLog
TrafficE (€] TrafficE Modul Traffi DB POA PushE Suppli O Lo
ORB i
|—addResponseParticipation—! ;
[no rights] |
Ac[ggsrslgDhé?\]ied log "Invalid access attempt”
[event closed]
CHART2Exception —
[not from controlling op center getControllingOpCenter
[<-——and no override] -
ResourceControlConflict
addl ticipatiorr
reviously added
[Participant previously Sy ([: B ﬁRTZE&ceplloJ\mW
uuuuuu getDB
CHART2EXxception getPO,
getPushSupplier
[OrganizationParticipationData]
create OrganizationParticipationimpl
[Or art tionData]
addOrgParticipation
[O i WParticipationData]
activate_object |
[OrganizationParticipationData]
push(O ParticipationAdded)
—[Resourced 1oael n
create
R ntData]
addResourceDeployment
[ResourceDeploymentData]
activate_object {
[ResourceDeploy Data]
push(ResourceDeploymentAdded)
addLoPEmry
log "Response ion added"

Figure 172. TrafficEventModule:AddResponseParticipation (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-275

04/17/01

3.17.2.5 TrafficEventModule:AssociateEvent (Sequence Diagram)

This diagram shows how a traffic event is associated to another traffic event. The
TrafficEventlmpl is called to associate the other event, and it calls the TrafficEventGroup
after checking the rights. The TrafficEventGroup updates the database, adds entries to its
history, and calls the other (secondary) event. The other event calls its event group, which
marks itself as secondary, and updates the database. CORBA events are pushed by both
TrafficEventGroups to notify the GUIs of the new association, and the new association is
also stored in the database. Entries are added to the traffic events’ histories and the
operations log to record the change.

This call is actually made via the
TrafficEvent CORBA interface. The call
to the TrafficEventimpl is shown for brevity.

E |TrafficEvemIrr|QI| TokenManipulator TrafficEveanroug”TrafficEvenlModule” TrafficEventDB | | TrafficEventimpl | | TrafficEventGroup ” PushEventSugglierl | OperationsLog |
ORB 7
assoCis /ent heck
checkAcce:
[no rights] log “Invalid Access Attempt*
|~ AccessDenied
éIl'rafficEvem Closed]..
CHART2Exception .
ciateEvent
| getDB-
{ -addEventAssociation
[error adding i« _____[error adding association] ______
association] CHARTZ2Exception

" —
CHART2Exception addLogEntry

“Event associated"

Tis primary] log "Event associated"
associateEvent

checkAcce:

—associateEvent—>

[is secondary]
setPrimary(false)

P

[is secondary]
updateEventState

-getPushSupplier push
EventStateChanged]

getDB:

-addEventAssociation

addLogEntry
“Event associated
and set to secondary";

log "Event associated"

[is primary]
push(TrafficEventAssociated)

log "Event associated"

Figure 173. TrafficEventModule:AssociateEvent (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-276 04/17/01

3.17.2.6 TrafficEventModule:ChangeEventType (Sequence Diagram)

This diagram shows how the traffic event’s type is changed. The TrafficEventimpl is called
to change the type, and it calls the TrafficEventGroup after checking the user’s rights. The
TrafficEventGroup then searches in the event’s previous history to find an event of the
same type. If one is not found, a new TrafficEventImpl is created and initialized from the
existing TrafficEventlmpl, then it is added to the TrafficEventGroup and the database. Then
it gets the old lane configuration from the TrafficEventGroup and sets it into the new
TrafficEventlmpl, if it’s a RoadwayEvent. Then all of the ResponsePlanitems are notified
of the new TrafficEvent so that they can switch their references to use the new event. The
old TrafficEvent is withdrawn from the trading service and the new TrafficEvent is
published in the trading service, and a CORBA event is pushed to update the GUIs. Entries
are added to the traffic event’s history log, the communications log, and the operations log,
and the old TrafficEvent is deactivated.

|T | | T | TrafficEventModule | | TrafficEventDB | CosTrading. Recnsterl | | POA | OperationsLog
ORB
changeType——> SenviceApplication | baia
S [event closed] ___
CHART2Exceptior
,,,,,,,,,,,,, [norights]
AccessDenied
Controlled by 9€iControllingOpCenter This object was created during
[Controlled by P the call to createTrafficEventimpl
l......another op center______
and no override] 7
ResourceControlConflict —changeEventType—} /
_[Already of desired type] _ — /
N c
1 getTrafficEventimpl
[Unknown traffic g
[Unknown traffic S — event type]-—----- /
S event type}————- UnkncvwnTrafﬂcEveanypeﬁ ttound] .
UnknownTrafficEventType! { limpl of type not foun N
P i crealeTraﬁ;cEvent\mpl TrafficEventimpl
fimpl of type not found]
i initializeFromimpl
{ [impl of type not found]
getDB
[impl of type not found]
addTrafficEventToGroup
[new impl instanceof
RoadwayEventimpl]
getLaneConfiguration
1
[new impl is roadway
event &&
TaneConfig != null]
setLaneC
activate_object (TrafficEvent)
[* for each response plan tem] eventTypeC '—eventTypeChanged—>
getTradi
ithdraw "old event"
g ADp
registerObject "new event™
push(Traffi (TypeCl
addLogEntry
"Traffic Event type changed”
[Pttt
addCommLogEntry
"Traffic event type changed”
getPO.
deactivate_object "old traffic event
log "Traffic event type changed"

if a TrafficEventimpl of the specified type is found, it will return it, otherwise

This method wil search all traffic events in this event groups history.
it will return nul

Figure 174. TrafficEventModule:ChangeEventType (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-277 04/17/01

3.17.2.7 TrafficEventModule:CloseEvent (Sequence Diagram)

This diagram shows what happens when a traffic event is closed. The TrafficEventimpl is
called to close the event. After checking the user’s rights, it calls the TrafficEventGroup to
close the event. The group updates the event state in the database, and removes all of the
ResponsePlanltems from the event. Entries are added to the traffic event’s history, the
communications log, and the operations log.

| T I | Toker I | T roup | | TrafficEventModule | | TrafficEventDB I | R lanitem | R Data | PushEventSupplier OperationsLog
ORB

close
Z— [already closed] _______

Success
l...[norights] log "Invalid access attempt™

AccessDenied
[required data
missing]
CHART2Exception —
etControllingOpCenter
,,,[(':\‘ eor:tfer??ngonno"gg::r?iggm efer to RemoveResponsePlanitem
ResourceControlconfiar | sequence diagram for details on this
close > peration.
-getDB:
ntState-
/ emove
[* for eac
ResponsePlanitem]
addl L?F;Emry
addCommLogEntry
P
ish(Traffi losedy
log “event closed"

The traffic event group will
record the time of closure
at this point.

Figure 175. TrafficEventModule:CloseEvent (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-278 04/17/01

3.17.2.8 TrafficEventModule:CreateTrafficEvent (Sequence Diagram)

This diagram shows how a new traffic event is created. The TrafficEventFactorylmpl is
called to create the new traffic event. After checking the user’s rights, it creates a new
TrafficEventGroup and calls it to create the appropriate type of TrafficEventimpl, based on
the type of BasicTrafficEventData that is passed in. Then the factory calls the
TrafficEventGroup to initialize. This adds any initial entries to the traffic event’s history
log, activates the TrafficEvent object, and publishes it in the trading service. It also adds
entries to the communications log and the operations log, and pushes a CORBA event
through the event service to inform the GUIs of the creation of the new event.

TrafficEventFactoryimpl

CosTrading.
% ‘ TrafficEventiodule POA Register PushEventSupplier | | OperationsLog TrafficEventDB

ORB

createTrafficEvent——

o rights]
o rights] Tog “invalid access attempr

AccessDenied t 7| TrafficEventGroup

<....._[unknown traffic event typel..__._ -
_[UnknownTrafficEventType] i<~ [typeCode == Incident]
IS~ UnknownTrafficEventType UnknownTrafficEventType create Incidentimpl

[typeCode ==
i—PlannedRoadwayClosure}—>{ PlannedRoadwayClosurelmpl
create

[typeCode ==
Di
create

[typeCode

o
. >’l:|
create o _
L [typeCode == ActionEvent]
oreats ActionEventimpl
TtypeCode == Congestion | -
Fypecode == RecurringCongestion]>{ o ocione ventimpl
CongestionEventimpl
create

i__[typeCode ==
create
[typeCode == SpecialEvent] SpecialEventimpl
create N This will store the TrafficEventGroup and %

create

the TrafficEvent data in the database.

S

L [database error]____
CHART2Exception

[for each log entry]: addLogEntry
(B S

getP

—————————activate_object(T:

getTr

por(Tr

log "New event created"

addCommLogEntry “New Event Opened”*

—
addLogEntry(eventOpened)

push “traffic event added"

Figure 176. TrafficEventModule:CreateTrafficEvent (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-279 04/17/01

3.17.2.9 TrafficEventModule:ExecuteResponse (Sequence Diagram)

This diagram shows how a traffic event’s response plan is executed. The TrafficEventimpl
is called to execute the response. It checks the user’s rights and then calls the
TrafficEventGroup to execute the response. The TrafficEventGroup calls each
ResponsePlanltem’s execute method. See the ExecuteResponsePlanltem sequence diagram
for details on how each response plan item is executed. The ResponseMonitorThread will
be running in the background, and will periodically cause the factory to check all of the
TrafficEventGroups for changes in the response plan item status. When prompted by this
thread, each TrafficEventGroup will push a CORBA event to notify the GUIs if any of its
response plan items have changed state.

o
i | T I T ipulator | | ResponseMonitorThread | | Traffi -actorylmpl I | Traffi roup | | R lanitem | | TrafficEventModule " P ipplier (0] 0g I
ORB
[—executeResponse—>}
ke...levent closed]
CHART2Exception L checkAccess
[no rights] log "Invalid access attempt"
|~ AccessDenied
—
[controlled by getControllingOpCenter;
6,,,,,ano(her opcenter " <——
and no override] execu pol Refer to the
ResourceControlConflici ExecuteResponsePlanitem
sequence diagram for details.
[* for each response i
plan item] i
execute——>
I~ =—monitorResponses—>
The response monitor [~monitorResponses—>
thread will trigger this
method every configurable [for each o=
interval. icEvel endR Jpdate
1sChanged)

Figure 177. TrafficEventModule:ExecuteResponse (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-280 04/17/01

3.17.2.10 TrafficEventModule:ExecuteResponsePlanltem (Sequence Diagram)

This diagram shows what happens when a response plan item is executed, either
individually or when a traffic event’s response plan is executed. The user’s rights are
checked, and then the ResponsePlanltemImpl calls the ResponsePlanltemData to execute
the item. The specific type of ResponsePlanltemData will call the appropriate target and the
request to activate the message will be queued. Then the ResponsePlanitemImpl is marked
as “executed”, and the TrafficEventGroup is notified of the change in the item. The
database is updated and an entry is added to the traffic event group’s history log. The
TrafficEventGroup will periodically be called on a background thread to push a CORBA
event for any of its ResponsePlanltems that have changed state.

| ResponsePlanitemimpl | TokenManipulator || TrafficEventGroup | | ResponsePlanitemData TrafficEventModule | | TrafficEventDB | | OperationsLog |
ORB
execute ——checkAccess
| ____[norights] log "Invalid access attempt"
AccessDenied
; o
... [event closed] ... isClo &
CHART2Exception i
getControllingOpCenter- At this point the
[controlled by ResponsePlanitemData
ﬁrfnoéhe’ op cevgte[w object will interact with
Feeaingcierter adewce aralon quve
4 ~ to activate the message in the
i /| field.
hasBeenExecuted

[<--[has executed]

execute:

—
setExecuted
R

responsePlanitem Changed

addLogEntry

getDB:

updateResponsePlanitemState

log ("plan‘item executed")

Figure 178. TrafficEventModule:ExecuteResponsePlanltem (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-281 04/17/01

3.17.2.11

This diagram shows how entries are retrieved from the traffic event’s history log. The

TrafficEventModule: GetEventHistoryText (Sequence Diagram)

TrafficEventlmpl is called to get the event history. It checks the user’s rights, then calls the
TrafficEventGroup, which calls the DatabaselLogger to get the entries. See the sequence
diagram Databasel.ogger:getEntries for more details.

X

ORB

TrafficEventimpl TrafficEventGroup Databaselogger
getHistory—>; getHistory——=>;
[no rights]

AccessDenied

——getEntries— ==

LogEntries
and Loglterator

.| Refer to DatabaselLogger:getEntries for B
" details on how the database logger class

handles this method.

Figure 179. TrafficEventModule:GetEventHistoryText (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-282

04/17/01

3.17.

Ser

2.12 TrafficEventModule:Initialize (Sequence Diagram)

This diagram shows what happens when the TrafficEventModule is initialized. The
ServiceApplication calls the TrafficEventModule to initialize, which reads in the properties
from a file, overriding the default properties. It creates an event channel for traffic events
and publishes the channel in the trading service so that other applications can see it. It
creates a TrafficEventDB object to handle all of the database calls, and a
TrafficEventFactorylmpl object to manage the traffic events. The TrafficEventFactorylmpl
creates a DatabaselLogger for logging the traffic event’s history log, then calls the
TrafficEventDB to load the TrafficEventGroup objects from the database. Then for each
group it will activate the current TrafficEvent, the ResponseParticipation objects, and the
ResponsePlanltem objects. The TrafficEvent is exported to the trading service. The
resource monitor thread and the response monitor thread are created, and the
TrafficEventFactory is exported to the trading service.

POA CosTrading Register
f E | [t IENnET
p
initialize-
—getDefaultProperties—
S .
1 This event channel
is used to push
TrafficEvent state
| ChaNgeS,
PushEventSupplier
F—getTradingRegister—>1
E—registerEventChannet—>1
Channely
getDBConnectionManager= Jj
T DB
create gl

TrafficEventFactorylmpl

*cleale%‘ Databasel ogger TrafficEventGroup

getTraffi

initiali {__activate_object__,
(TrafficEvent)

—
[*for each response L _activate_object
ipation object P

1]

[* for each traffic]
eventgroup] | [*foreach {_activate_object.
ResponsePlanitem] | (ResponsePlanktem)

gisterObject(Traff

ResourceMonitorThread

a
tart J Thread
creat >

port(Traffic Event Factory)

Figure 180. TrafficEventModule:Initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-283 04/17/01

3.17.2.13 TrafficEventModule:MonitorControlledResources (Sequence Diagram)

This diagram shows the periodic maintenance of the traffic events—the monitoring of the
controlling operations center, and the removal of the traffic events from the system. When
the ResourceMonitorThread calls the factory to monitor the resources, the factory first gets
all of the controlling operations centers for all traffic events. If it does not have references
for all of the operations centers’ IDs, it will query the OperationsCenter object from the
trading service. Then it asks each OperationsCenter how many users are logged in. If no
users are logged in, it pushes a CORBA event indicating that shared resources need to be
transferred to another operations center. The ResourceMonitorThread will also call the
factory to check if events need to be removed from the system. The factory asks each closed
traffic event for its closure time and determines whether it has been closed long enough to
remove it from the system. If a traffic event is removed, the database is updated, the offer
is withdrawn from the tradiing service, the CORBA object is deactivated, and a CORBA
event is pushed on the event channel indicating that the traffic event was just deleted.

T DB

TrafficEventFactorylmpl TrafficEventModule

Resource TrafficEventGroup CosTrading.Lookup | | Of enter | PushEventSupplier I CosTrading.Register | POA |

Monitor
Thread

monitorResource:

getControlingOpCenters
e

getPushE

-getTradingL.ookup-
—
getOpCenterRef

[op center ref not found].
query “all op center objects”

"Store op center refs"
—

* for each controling gethumLoggedinUser
op center] [HumLogged\nUsers <=0]
push(UnhandledControlledResourceEvent)

[-takeEventsOffine—>}

isClosed

getClosureTime-

[curent time - closure time >=
takeOfflineThreshold——=
takeOffline

getDB

takeEventOffline
——getTradingRegister——>}
[for each withdraw
trafficEvent] getPO,

»_object (TrafficEvent)

ResponseParticipation] *_object (Respot ipation)
[kt ekl

push (TrafficEventDeleted, y

ddLogEnty
addLogEntry
[E—

Figure 181. TrafficEventModule:MonitorControlledResources (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-284 04/17/01

3.17.2.14 TrafficEventModule:RemoveEventAssociation (Sequence Diagram)

This diagram shows what happens when a traffic event association is removed. One of the
TrafficEventImpl objects is called to remove the association. It checks the user’s rights and
removes the association from its TrafficEventGroup and from the database and pushes an
event. It also calls the associated event to remove the association from it. The associated
event does the same thing, but when it calls back to the first TrafficEvent, the association
has already been removed so it returns an exception to the second TrafficEvent and the
association removal is complete.

o

PushEvent
| T | TrafficEventGroup | TrafficEvent TrafficEventGroup TrafficEventModule TrafficEventDB o] i og Supplier
ORB
[—removeEventAssociation—> [no rights]
[no rights] o o
AccessDenied log "Invalid access attempt'
,,,,,,,,,,,,,, [event closed]
CHART2Exception —removeEventAssociation—>
e [event not associated] ___
L [event not associated] = SpecifiedObjectNotFound
SpecifiedObjectNotFound getDB:

—
associationRemoved

push (T emoved)
addLogEntry
Jog “asso 1 removed”
| i __levent not associated]___
fevent no‘ SpecifiedObjectNotFound
k- {event not associated]— SpecifiedObjectNotFound

getDB-

—
associationRemoved

push (TrafficEventAssociationRem

addLogEniry

log "as: 1 removed™

Figure 182. TrafficEventModule:RemoveEventAssociation (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-285 04/17/01

3.17.2.15 TrafficEventModule:RemoveResponseParticipation (Sequence Diagram)

This diagram shows how a response participation is removed from a traffic event. The
ResponseParticipationImpl is called to remove itself. After checking the user’s rights, it
calls the TrafficEventGroup that is attached to and asks it to remove the participation. The
TrafficEventGroup removes it from the database, deactivates the object, pushes a CORBA
event to the event service, and adds entries to the event history log and operations log.

|ResgonseParticiQalionlmQI TraﬁicEventGrougl TrafficEvemeJdulel TrafficEventDB | | POA || PushEvenlSqulierl | OperationsLog |
ORB
remove————>
i [no rights]
Achsrs'%"éﬁ]ied log "Invalid access attempt"

[event closed)]
CHART2Exception

getControllingOpCenter
[not from controlling
. __opcenterandno____
override]
ResourceControlConflict

—removeResponseParticipation—>{

getDB:

[participant instanceof

ResourceDeployment——>
removeResourceDeploymnet

[participant instanceof

OrganizationParticipationf———>
removeOrgParticipation

getPOA

_object

——getPushSupplier—>}

push(ParticipationRemoved}

addLogEntry
<

log "Response participant removed"

Figure 183. TrafficEventModule:RemoveResponseParticipation
(Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-286 04/17/01

3.17.2.16 TrafficEventModule:RemoveResponsePlanitem (Sequence Diagram)

o
ResponsePlanitemIimpl | ResponsePlanttemData | ArbitrationQueue TrafficEventGroup | | TrafficEventModule || TrafficEventDB | | POA | | PushEventSupplier || OperationsLog
ORB
remove [no rights]
[no rights]. AccessDenied
AccessDenied
— [Eventclosed]
CHART2Exception
[not from controlling
k.opcenterandno___
override]
ResourceControlConflict ——revokeExecution—>
removeR:
-getDB:
removeResponsePlanitem
getPOA—>4
deactivate_object (ResponsePlanitem)
—getEventSupplier—
pu: n(responsa—mf
log "Reéponse Plan item removed'
addLogEntry
P—
bjectNt ‘: ist:

Figure 184. TrafficEventModule:RemoveResponsePlanitem (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-287 04/17/01

3.17.2.17 TrafficEventModule: SetLaneConfiguration (Sequence Diagram)

This diagram shows how the lane configuration is set for a roadway event. The
RoadwayEventimpl is called to set the lane configuration. After checking the user’s rights,
it gets the old lane configuration and compares it to the new configuration. If there is a
change in a lane’s state, it records the state change in the database and a log entry is added
to the traffic event’s history log. Then a CORBA event is pushed indicating that the lane
configuration has been set and entries are added to the traffic event’s history log and
operations log.

This is the existing lane configuration
object.

X

LaneConfiguration
ORB LaneConfiguration

LaneConfiguration

| TrafficEventDB |

| RoadwayEventimpl TrafficEventGroup ” TrafficEventModule || PushEventSugglierl | OperationsLog |

[—setLaneConfiguration—>} i [no rights] i
[no rights] log "Invalid access attempt”
AccessDenied

— [event closed]
CHART2EXxception

[not from controlling op
[<--center and no override}
ResourceControlConflict

1
setLaneConfigurationinMemory
P— i

getLanesﬁ
getLé ne:

-getModule-

getDB:

[offset existed in previous conleural\on
+and state changed]—
[* for each |?"f recordLaneStateChange
in new config i

[offset existed in brevious config
-and state changed]
addLogEntry

etLaneConfiguration:

getEventSupplier

push(LaneConfigurationChanged)

addLogEntry

log "Lane configuration changed"

Figure 185. TrafficEventModule:SetLaneConfiguration (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-288 04/17/01

3.17.2.18 TrafficEventModule: SetMessageForUselnResponsePlan (Sequence
Diagram)

This diagram shows how a message is modified within an existing response plan item. The
ResponsePlanltemIimpl is called to set the item data. After checking the user’s rights, it
marks the response plan item as being “not executed”. It updates the plan item in the
database and pushes a CORBA event via the event service indicating that the response plan
item has changed. Entries are added to the traffic event’s history log and the operations log.

E ResponsePlanitemIimpl TrafficEventGroup | | TrafficEventModule TrafficEventDB | | PushEventSupplier || OperationsLog
ORB T
setitemDatar 3 [no rights]
[no rights] log "Invalid access attempt"
accessDenied
[event closed]
CHART2Exception

[not from controlling —getControllingOpCenter—>}
<o op center and no override]----
ResourceControlConflict

getDB:

updateResponsePlanitem

1
setExecuted(false)

getPushSupplier
push(ResponsePlanitemModified)

addLogEntry——>!

log "Respohse plan item modified"

Figure 186. TrafficEventModule:SetMessageForUselnResponsePlan
(Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-289 04/17/01

3.17.2.19

TrafficEventModule: Shutdown (Sequence Diagram)

This diagram shows what happens at shutdown. The TrafficEventModule is called to shut
down, and it calls the TrafficEventFactorylmpl, which calls all of the TrafficEventGroups.

Each TrafficEventGroup deactivates the current TrafficEvent and all of its

ResponseParticipation objects and ResponsePlanltem objects. Then the factory shuts down

the resource monitor thread. The module deactivates the TrafficEventFactory object and

o
i | TrafficEventModule | TrafficEventFactorylmpl | TrafficEventGroup | ServiceApplication | P |
ServiceApplication
[——shutdown——>{
shutdown——>}
shutdown——>}
getPOA
deactivate_object,
(TrafficEvent)
= i
[* for each * for each response ; ; } icinati
TrafficEventGroup] [partici atioeﬂ —deactivate_object (ResponseParticipation)
—
[* for each response deactivate_object (ResponsePlanitem)
plan item]
delete:

"Interrupt plan status

X

"Interrupt shared resource monitor thread"

monitor thread"

getPOA

deactivate_object(TrafficEventFactory)

shutdown

del,
delete

del,
delete

Figure 187. TrafficEventModule:Shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

X

let
cccccc

3-290

04/17/01

3.17.2.20 TrafficEventModule: TransferTrafficEvent (Sequence Diagram)

This diagram shows what happens when an event is transferred to another operations
center. The TrafficEventlmpl is called to set the controlling operations center, and after
checking the user’s rights, it calls the TrafficEventGroup, which updates the database and
calls all of the ResponsePlanltems to tell them that the event has been tranferred. The
ResponsePlanltems cause the ArbitrationQueue to be called to transfer the event. A
CORBA event is pushed via the event channel and an entry is added to the traffic event’s

o
:t TraﬂicEvemIlel Traffi tGroup | | TrafficEventModule | | TrafficEventDB || ResponsePlanitem | ResponsePlanitemData || ArbitrationQueue || PushEventSupplier || OperationsLog
ORB i
[-setControllingOpCenter—> no rlgﬁts]
E— [norights]____________ log "Invalid access attempt”
AccessDenied r~setControllingOpCenter=*
,,,,,,,,,,,, finvalid D] ________
,,,,,,,,,,,,, finvalidID] CHART2Exception
CHART2Exception getDB
. eventTl —eventTransferred—>}
[* for each —eventTransferred—>{
ResponsePlanitem]
—getPushSupplier—>}
push(TrafficEy hangedy
log
add LDP Entry

Figure 188. TrafficEventModule:TransferTrafficEvent (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-291 04/17/01

3.18 TTSControl

3.18.1 Classes

3.18.1.1 TTSControlModuleClasses (Class Diagram)

The TTSControlModule serves an instance of the TTSConverter interface, which provides
functionality to convert text messages into speech for the CHART2 system. This diagram
shows how the implementation of a TTSConverter CORBA interface relies on other
supporting classes to perform its functions.

TTSControlModuleDB
11 FileCacheManager
DBConnectionManager '—0
1 1| m_maxCacheSize
'»:/nw‘ mar) m_currentCacheSize
insertFileCachelnfo(m_lastUsedFileCacheList java.util TreeMap
(iAo leCacherif 1t
deleteFileCachelrfo() 1| FieCacheMernage(TTSConralbB ob, (@]
updateFileCachelnfo) — aCacheSize)
gelFileCacheinoSug fon, pu(Object key, Object value)
1 AudoDalaForma format) get(Object key)value
i [
ServiceApplicationModule crea|e|=neCachelnvu(smnq fleName) i
leCachelnfo
Uniquelyldentifiable cleanupCachedFies(
inialze(ServiceApplication app)boolean Shutdown(-
shutdown(ServiceApplication app)-boolean R i
javalang.Runnable FileCachelnfo
string m_text
AudioDataFormat m_format
TTSConverter run) string m_flename
long m_fileSize
: 1 long m_lastUsedTimeStamp
11 TTSControlModule long m_voiceSeconds
ServiceApplication | 1
ConvertTextToSpeech(stiing text,
AudioDataF ormat format, FileCacheCleaner
TTSControModule() long maxChunkSize,
TTSC pe TTSPriority priority,
AudioPushConsumer consumer) JavaioFile
R R R getVoiceLength(string text,
AudioDataFormat format,
AudioPushConsumer consumer)
1,
1
TTSMessageQueue 1 .
TTSControlModuleProperties
static int CONVERT_TTS_CMD =
static int GET_VOICE_LENGTH_CMD = 1
: 1 m systemMessageList *| TTsTextMessagelnfo
TTSControlModuleProperties (Properties props) TTSConverterimpl > m_ i
getVoiceType! string text
gexAumaneDuLacanon() m_id 1 1 TTSMessageQueue(‘l‘FSSeNer server, AudioDataFormat format
getAudioDatal ats () m_name > long chunkSize
GetAudioFleNaxCacheSize) g PGS ons) AudioPushConsumer obj
getAudioPushThreadPoolSize() TTSConverterimpl(TTSServer server, addMissage(TTSTexNiossamnb moghio, d
1 TTSControlDB db, - TTSPriority priority)
sh
o n-?ﬁ,é:ds) S AACipinfolFieCacheinfo lenfo,
intcmd,
shutdown(AudioPUshConsumer consumer) 1
: 1l 1
TTSServer 1
static int VOICE_MALE = 1 AudioPushConsumer
static int VOICE_ FEMALE 1
static int VOICE_NEUTRAL = 2
m_supportedAudioDataFormatList
pushAudio(AudioData data):void
TTSServer) pushAudioPopertes(AudoDataFormat format,
nitialize(int ‘voiceType, long secon
ioDataFormatList formats, long swze) vmd
string fleDirLocation) pushFailre(string enMegvoid
GetSupportedAudioFormats()
ConvertTextToSpeech(string text, 1
siring fiename,
Shutdonng AudioDataFormat format) PadioPushThroadvianager
LHTTSEngine i AudioEncoding m_freeThreads

Initialize()
Stop()

Say()
Configindex()
ConfigTotal()

ConfigFormat()

A AudioDataFormat
AudioEncoding m_encoding;
* | float m_sampleRate;
long m”sampleSizelngits;
long m_channels;
long m_frameSize;

float m_frameRate;
boolean m_bigEndian;

"

PCM_SIGNED
PCM_UNSIGNED
A LAW

U_LAW

m_inUseThreads

AudioPushThreadManager(int numPushThreads)
pushiAduio(AudigPushConstmer consumer,

InputStream stre:

AudloDalaFOrmat fulmal

fong chunisize)

hread()
eethudioPuanThtast0

Figure 189. TTSControlModuleClasses (Class Diagram)

3.18.1.1.1 AudioDataFormat (Class)

This structure specifies the format of audio data.

R1B2 Servers Detailed Design Rev. 0

3-292

04/17/01

3.18.1.1.2 AudioEncoding (Class)

This enum defines the supported types of encoding for audio data.

3.18.1.1.3 AudioPushConsumer (Class)

This interface is implemented by objects that are intended to receive audio data using the
push model, where the server pushes the data to the consumer. One call to
pushAudioProperties() will always precede any calls to pushAudio().

3.18.1.1.4 AudioPushThreadManager (Class)

This class maintains a pool of reusable AudioPushThread objects, which can be used to
push audio clip information back to the client. It provides the functionality to manage
access to the AudioPushThreads.

3.18.1.1.5 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART Il system thread requiring database access gets a database
connection from the pool of connections maintained by this manager class. The connections
are maintained in two separate lists namely, inUseL.ist and freeList. The inUseL.ist contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor
thread that is started by the constructor. This connection monitor thread periodically checks
the inuseL.ist to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

3.18.1.1.6 FileCacheCleaner (Class)

This class represents an instance of a thread that is created to delete the audio clips that
have not been used recently when the cache size used by the audio clips exceeds the
maximum limit assigned.

3.18.1.1.7 FileCachelnfo (Class)

This structure specifies the information about an audio clip file, which has been converted
from a text message to voice and cached for future use.

R1B2 Servers Detailed Design Rev. 0 3-293 04/17/01

3.18.1.1.8 FileCacheManager (Class)

This class maintains a mapping between text messages and the corresponding audio clip file
information. This is accomplished by maintaining a list of TreeMaps (one for each audio
format supported) with text as key and audio clip information as the value. This class also
helps manage the amount of hard drive space consumed by the audio clips by deleting the
old clip files when the maximum cache size limit is reached. The maximum cache size limit
can be set by the administrator using the system properties.

3.18.1.1.9 java.io.File (Class)

This class is an abstract representation of file and directory pathnames.

3.18.1.1.10 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.18.1.1.11 java.util.TreeMap (Class)

This class is an implementation of the SortedMap interface. This class guarantees that the
map will be in ascending key order, sorted according to the natural order for the key’s class,
or by the comparator provided at creation time, depending on which constructor is used.

3.18.1.1.12 LHTTSEnNgine (Class)

This interface represents the L&H RealSpeak Server TTS engine used to convert text
messages to speech.

3.18.1.1.13 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.18.1.1.14 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

R1B2 Servers Detailed Design Rev. 0 3-294 04/17/01

3.18.1.1.15 TTSControlModule (Class)

This class implements the Service Application module interface. It publishes the
TTSConverterimpl object, which provides the functionality to convert text messages to
speech for the CHART2 system. It also creates the RealSpeakServer object, which provides
the functionality to access the LHTTSEngine and the TTSControlModuleDB object, which
provides access to the database.

3.18.1.1.16 TTSControlModuleDB (Class)

This class is a database accessor class used to store and retrieve audio clip information.

3.18.1.1.17 TTSControlModuleProperties (Class)

This class represents the system properties specific to the TTS Control Module.

3.18.1.1.18 TTSTextMessagelnfo (Class)

This struct specifies the text message information required to process text to speech
converter request, the call back object to pass the results back and the type of command
requested.

3.18.1.1.19 TTSConverter (Class)

This interface represents the Text to Speech converter object that allows text to be passed in
and speech to be returned.

3.18.1.1.20 TTSConverterlmpl (Class)

This is the implementation of the TTSConverter interface, which provides the functionality
to convert text to speech for the CHART2 system.

3.18.1.1.21 TTSMessageQueue (Class)

This class provides the functionality to retrieve messages from the queue and process them
by either retrieving the audio clip data using the FileCacheManager object if available or by
converting the text messages to speech using the TTSServer object. For text messages not
already converted and available in the cache, this class maintains two queues of messages to
be converted into speech, one for message requests from the system and another for the
users. The messages in system message queue get a higher priority over messages in user
message queue. All the messages of a particular queue are processed in a First In First Out
fashion. The audio data produced from conversion or retrieved from the cache is passed
back to the client via the AudioPushConsumer object using the AudioPushThreadManager
object.

R1B2 Servers Detailed Design Rev. 0 3-295 04/17/01

3.18.1.1.22 TTSServer (Class)

This class provides the functionality to access and control the TTS Engine from the
CHART2 system. It provides the functionality to start, stop and change the configuration of
the TTS Engine. It also provides a method to convert a text message to speech.

3.18.1.1.23 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 Servers Detailed Design Rev. 0 3-296 04/17/01

3.18.2 Sequence Diagrams

3.18.2.1 TTSControlModule:AddMessageToQueue (Sequence Diagram)

This diagram shows how a TTSConverter request is added to the message queue. First, the
TTSMessageQueue queries the FileCacheManager to check if an already converted audio
clip exists for the text message of the desired audio format. The FileCacheManager looks in
the TreeMap of the desired audio format for the audio clip using the text message as the
key. The TreeMap returns the audio clip file information, if the audio clip already exists.
Otherwise, it returns a null. If the audio clip was not found, the message is queued in the
proper queue depending upon the priority and the request returns (see
ProcessQueuedMessages sequence digram for details about how the queued messages are
processed). If the audio clip is found, the last used timestamp in the file cache information
is updated and the audio data is pushed back to caller using the AudioPushConsumer object
passed with the request (see PushAudioClipInformation for details about how audio clip
data are passed back to the client).

1T

Queue ‘

] [

FileCacheManager

TreeMap ‘

TTSConverterimpl

TTSControlModuleDB

getFileCachelnfo

[if audio clip found]

get

____[ifthe key exists]
FileCachelnfo

_[if the key is not found].
null

Update last used
time stamp in
FileCachelnfo

[if audio clip found]
put

... This updates the
FileCachelnfo

updateFileC:

FileCachelinfo

[if audio clip not found

if audio clip not found]
null

TTSPriority = SYSTEM]
add

[if audio clip not found

&
TTSPriority =
add

[if message
added to queue]
notify

[if clip found]
pushAudioClipinfo

JSER]

Figure 190. TTSControlModule:AddMessageToQueue (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-297 04/17/01

3.18.2.2 TTSControlModule:CleanupFileCache (Sequence Diagram)

This diagram shows how the FileCacheManager thread deletes the old audio clip files when
the cache limit is exceeded.

For file info sorted k
by last used time
stamp

m_lastUsedFileCacheList FileCachelnfo TTScontrolModuleDB

FileCacheManager
TreeMap
create | FileCacheManager

‘ lterator ‘

FileCacheManager

/alues().iterator()

terator

File

>

)
This deletes the file from
.. thefile system
m_format ><

[while Current Cache Size >

Max Allowed cache Size]
[if audioFormat

“for the TreeMap = m_format—>|
remove(m_text)

"Update current
cache size"

Figure 191. TTSControlModule:CleanupFileCache (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-298 04/17/01

3.18.2.3 TTSControlModule:ConvertTextToSpeech (Sequence Diagram)

This sequence diagram shows how a convert text to speech request is processed. The
message is added to the TTSMessageQueue and audio clip information will be pushed back
using the AudioPushComsumer object passed through this call. See
ProcessQueuedMessages and HARULility.PushAudio sequence diagrams for details about
how the messages are processed and the data is pushed back.

% TTSConverterimpl TTSMessageQueue

ORB

convertTextToSpeech

Message queue processes the
request and returns the audio data "Replace <MAE> Tag"
asynchronously. See
AddMessageToQueue and
ProcessQueuedMessages
sequence diagram for details about
the order in which the messages —————addMessage
are converted.

Figure 192. TTSControlModule:ConvertTextToSpeech (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-299 04/17/01

3.18.2.4 TTSControlModule:CreateFileCachelnfo (Sequence Diagram)

This diagram shows how the FileCacheManager creates a FileCachelnfo object, which
stores the text message and audio clip file information for future use. A file object is created
from the given file name and is passed to AudioSystem class to get the AudiolnputStream
object, which contains the audio format information and the actual data. The length of the
audio message and the size of the audio file are calculated using the audio format
properties. The AudioDataFormat object is created and a FileCachelnfo object is created
using the various data available. Finally, the FileCachelnfo object is added to the TreeMap
containing others clip information of similar audio format and the FileCachelnfo object is
returned.

TTSControlModuleDB

FieCachetinager | | [| [soroma

createFileCachelnfo————>

TreeMap ‘

TTSMessageQueue

sizeoftheaudocip= | | | i ~| AudioDataFormat
frame length * frame size

create “| FileCacheinfo

[if treemap does not
exist for the
create

[if TreeMap for
the AudioFormatt
put

"Update current
cache size"

if current cache size >
max cache size allowed]

cleanupCachedFiles

Figure 193. TTSControlModule:CreateFileCachelnfo (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-300 04/17/01

3.18.2.5 TTSControlModule:GetSupportedFormats (Sequence Diagram)

This diagram shows how to retrieve a list of currently supported audio formats from the

TTS Engine.
i TTSConverterimpl RealSpeakServer E
LHTTSEngine
ORB
getSupportedFormats—>
GetSupportedAudioFormats—>
ConfigTotal
Configindex
ConfigFormat—————>)
[* for each Config]
Create > AudioDataFormat
<—AudioDataFormatList——————
S AudioDataFormatList---------4

Figure 194. TTSControlModule:GetSupportedFormats (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-301

04/17/01

3.18.2.6 TTSControlModule:Initialize (Sequence Diagram)

This diagram shows the sequence of operations that takes place when the
TTSControlModule is initialized. Upon creation, the TTSControlModule creates a
TTSControlServiceProperties object, which provides the user defined system properties to
the rest of the objects in the TTSControlModule. A TTSControlDB object is created to
provide access to the database for TTSControlModule. A TTSServer object is created to
control and provide access to the TTS engine. A TTSConverterImpl object is created,
activated with the POA and published in the Trader to provide the capability to convert text
to speech for the rest of the CHART2 system. The TTSConverterimpl object creates a
TTSMessageQueue thread, which provides the functionality to queue and prioritize the
TTSConverter requests. The TTSConverterimpl object also creates a FileCacheManager
object, which manages the audio clip file info. The TTSMessageQueue creates an
AudioPushThreadManager object, which contains a pool of AudioPushThreads that can be
used to push audio clip information back to the clients of the TTSConverter. The number of
AudioPushThreads to be created can be configured through the system properties file.

POA

F—getAudioFileDirLocatior—>{

" TTSServer

Figure 195. TTSControlModule:Initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-302 04/17/01

3.18.2.7 TTSControlModule:GetVoiceLength (Sequence Diagram)

This sequence diagram shows how a request to get audio message length is processed. The
message is added to the TTSMessageQueue and audio clip information will be pushed back
using the AudioPushComsumer object passed through this call. See
ProcessQueuedMessages sequence diagrams for details about how the messages are
processed and the data is pushed back.

EE TTSConverterimpl TTSMessageQueue
ORB
getVoiceLength——>

Message queue processes the request and
returns the voice properties asynchronously.
See ProcessQueuedMessages sequence
diagram for details about how the voicelength "Replace <MAE> Tag"
is pushed. Also, note that this request is
added to the user message queue which has a
lower priority than system message queue.

addMessage

Figure 196. TTSControlModule:GetVoiceLength (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-303 04/17/01

3.18.2.8 TTSControlModule:ProcessQueuedMessages (Sequence Diagram)

This diagram shows how TTSMessageQueue thread processes the queued messages. The
thread continuously looks for messages added to System Message Queue and User Message
Queue. At any time, messages queued in the System Message Queue have a higher priority
over the messages queued in the User Message Queue. Once a message is retrieved from
the queue, a check is made to see if the same text message with the desired audio format has
been converted before. If the audio clip file is found, the audio data is pushed back to client
using the AudioPushConsumer object passed with the request. If a pre-converted clip is not
available, the thread requests the TTSServer to convert the text message to speech. If the
TTS engine fails to convert the message, the consumer is notified. If the message is
converted successfully, the audio clip information is stored in the FileCacheManager for
future use and the audio properties are pushed to the client. See PushAudioClipInfo
sequence diagram for details about how the audio clip information is pushed.

R1B2 Servers Detailed Design Rev. 0 3-304 04/17/01

TTSConverterimpl

TTSMessageQueue

RealSpeakServer

AudioPush
ThreadManager

FileCache

Manager

[while not shutdown]

[if System Message Queue not empty]
Get Message From
System Message Queue

[if System Message Queue empty]
Get Message From

User Message Queue

[if no messages in queue]
‘wait

[i

getFil

if clip exists]

AudioPush

Consumer

TTSControl
ModuleDB

“This looks in the TreeMap
corresponding to the audio
format desired to check if there
is aaudio clip converted before
for the text message. f found,
the file info is returned.

__lifthe key is not found].__
null

get

[ifthe key exists]
FileCachelnfo

[if clip exists].
put

[if clip exists]

Update last used
timestamp and pu
new file info.

FileCachelnfo

[if clip does not exist]
nul

_| see PushAudioProperties
sequence diagram for details

i clip exists]
pushAudioClipifo

ConvertTextToMessage

_[TTSEngine error] _

[if clip does not exist]

updateFileCacheinfo

This sets the engine
1o produce audi
desired format

of

LHTTSEngine

ucce:

[if message converted].
createFileCachelnfo

[TTSEngine error].
pushFai

ilure

See CreateFileCach
sequence diagram

[if message converted]
pushAudioClipinfo

equence diagram for details.

ee PushAudioProperties %

Figure 197. TTSControlModule:ProcessQueuedMessages (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-305

04/17/01

3.18.2.9 TTSControlModule:PushAudioClipinformation (Sequence Diagram)

This diagram shows how the audio clip information is pushed back to the caller of a
TTSConverter request. If the request is a get voice length command, the audio clip
properties are pushed to client using the AudioPushConsumer passed with the request. If
the request is for converted audio data, a File object is created to access the audio to retrieve
the audio data. An AudiolnputStream object is retrieved using the AudioSytem class. The
input stream along with the AudioPushConsumer is passed to the
AudioPushThreadManager for pushing the audio data. See HARUTility.PushAudio for
details about how the audio data is pushed.

TTSMessageQueue AudioPushConsumer AudioSystem AudioPushThreadManager

TTSMessageQueue

[if cmd = GET VOICE_LENGTH_CMD]__,
pushAudioProperties
[&-~[if cmd = GET_VOICE_LENGTH_CMD}-

if cmd = CONVERT_TTS_CMD]_|
create

I
i

if cmd = CONVERT_TTS_CMD]
getAudiolnputStream

[if cmd = CONVERT_TTS_CMD],
pushAudio

See HARUtility.PushAudio for k
details about the the audio data
are pushed to the caller.

Figure 198. TTSControlModule:PushAudioClipinformation (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-306 04/17/01

3.18.2.10 TTSControlModule:Shutdown (Sequence Diagram)

This diagram shows the sequence of operations that takes place when the
TTSControlModule is shutdown. The TTSConverterImpl object is deactivated and
shutdown. The TTSConverterlmpl object in turn shuts down the TTSMessageQueue thread,
which causes to shutdown the AudioPushThreadManager thread and AudioPushThreads.
The TTSServer object is also shutdown and the TTSControlDB object is destroyed.

FileCache AudioPush
Manager TT Queue | | Tt POA

LHTTSEngine
leactivate_object(TTSConverterimply

X

CHART2
Application Service

TTSC | TTSC DB TTSServer TTSConverterimpl AudioPushThread

[* for each Threadl;
shutdown

X

hutdown
hutdown >< ><

X

X X
Figure 199. TTSControlModule:Shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-307 04/17/01

3.19 UserManagementModule

3.19.1 Classes

3.19.1.1 UserManagementModuleClasses (Class Diagram)

This class diagram shows classes that support user management in the CHART 11 system.
The purpose of this module is to serve the object implementing the UserManager interface

and to serve the objects implementing the Profile interface.

UserManager

Profile

createUser(AccessToken token, UserName, Password):void
deleteUser(Access Token,UserName):void
getUsers(AccessToken):UserList

getRoles(Access Token):RoleList

getUserRoles (Access Token,UserName):RoleList

o Token, : ist
setRoleFunctionalRights (AccessToken,RoleName, FunctionalRightList):void
createRole(Access Token, Role):void

ServiceApplicationModule

Token, -void
changeUserPassword(Access Token, UserName, Password,Password):void
setUserRoles(AccessToken, UserName, RoleList):void
grantRole(AccessToken, UserName,RoleName)-void
revokeRole(Access Token,UserName,RoleName):void
setUserPassword(Access Token, UserName, Password):void
ping():voi

initialize(ServiceApplication app):boolean
ppl

():Profile
Toke

D Token,

ist):void
oid

perty Token,
getProfileProperties():ProfiePropertyList

getls n Profile
i Profilelmpl
UserManagementModule UserManagerimpl
m_application m_database
destroy
UserManagementModule() [Database db, CosTrading. Register traderReg, CosTrading.Lookup traderLookup)
1 1 1 1
1 1 1
UserManagementDB CosTrading.Lookup ‘ CosTrading.Register
1 DBConnectionManager m_db;

ServiceApplication

start

shutdown

getORB():0RB

getPOA(string poaName):POA
getTradingRegister():Cos Trading.Register
getTradingLookup():Cos Trading.Lookup

y():EventCi

getEver
getDBCx
getOperationsLog():OperationsLog
getProperties():java.util. Properties
getDefaultProperties () java.util.Properties
registerObject(obj, i, name, type, publish):void
annel :

getiDGenerator():IdentifierGenerator

getUsers

getRoles

getUser

getUserRoles
getUserPassword
setUserPassword
createRole

deleteRole
setRoleFunctionalRights
getRoleFunctionalRights
createUser

deleteUser

grantRole

revokeRole
setUserPassword
setUserRoles
getUserProfile
deleteUserProfile

getUs e
setUserProfileProperties
deleteProfileProperty
getSystemProfile
getSystemProfileProperties
setSystemProfileProperties

Figure 200. UserManagementModuleClasses (Class Diagram)

R1B2 Servers Detailed Design Rev. 0

3-308

04/17/01

3.19.1.1.1 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for
object publication and discovery respectively. The CosTrading.Lookup is the interface that
applications use to discover objects that have previously been published.

3.19.1.1.2 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for
object publication and discovery respectively. The CosTrading.Register is the interface to
the trading service that server applications use to publish objects in order to make them
available for client applications to discover.

3.19.1.1.3 Profile (Class)

This class contains a set of user or administrator defined properties that are used to
configure how the CHART Il system behaves or presents information to a user.

3.19.1.1.4 Profilelmpl (Class)

This class is the specific implementation of a Profile interface that will be served by the
User Management Service. As such, it contains the profile properties and provides methods
to get, add and delete the properties.

3.19.1.1.5 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.19.1.1.6 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.19.1.1.7 UserManagementDB (Class)

The UserManagementDB Class provides methods used to access and modify User
Managment data in the database. This class uses a Database object to retrieve a connection
to the database for its exclusive use during a method call.

R1B2 Servers Detailed Design Rev. 0 3-309 04/17/01

3.19.1.1.8 UserManagementModule (Class)

This module creates, publishes and deletes the object that implements the UserManager
interface for user configuration and manipulation.

3.19.1.1.9 UserManager (Class)

The UserManager provides access to data dealing with user management. This includes
users, roles, and functional rights. The UserManager is largely an interface to the User
Management database tables.

3.19.1.1.10 UserManagerimpl (Class)

This class is the specific implementation of a UserManager interface that will be served by
the User Management Service. As such, it provides implementations of each of the methods
in the UserManger interface.

R1B2 Servers Detailed Design Rev. 0 3-310 04/17/01

3.19.2 Sequence Diagrams

3.19.2.1 UserManagementModule:AddUser (Sequence Diagram)

A user with the proper functional rights may add a new user to the system. The user will be
added to the user database provided the password and username specified for the new user

are valid.
o
O: RB; UserManagerimpl TokenManipulator UserManagementDB OperationsLog
createUser—>
checkAccess—>
[no rights]
log
[no rights]
AccessDenied |
createUser

... linvalid password] InvalidPassword

InvalidPassword

[invalid user name] nvalidUserName

InvalidUserName

reateUserProfile

o

[database error]

e o CHART2Exception

Success

log

Figure 201. UserManagementModule:AddUser (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-311 04/17/01

3.19.2.2 UserManagementModule:ChangeUserPassword (Sequence Diagram)

A user may change his/her own password. The system will verify that the invoking user is
actually the user whose password is being changed and will require the user to pass his/her
current password that must match the password in the user database.

Thrown if the B

invoking user is
not the user
whose password
is being changed

Thrown if the B

old password
passed does not
match the users
password in the
database

ORB

X

UserManagerimpl

TokenManipulator

[——changeUserPassword——=>}

UserManagementDB

OperationsLog

checkAccess

[no rights]

[no rights]
AccessDenied

—————————————getUserPassworq—— >

[unknown user]
UnknownUser

UnknownUser

IncorrectPassword

[invalid password]
InvalidPassword

R [database error]
CHART2Exception

. [databasé error]

IncorrectPassword

——————————setUserPassword——>}

CHART2EXxception

Success

Figure 202. UserManagementModule:ChangeUserPassword (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-312

04/17/01

3.19.2.3 UserManagementModule:CreateRole (Sequence Diagram)

A user with the proper functional rights may create a new role in the user database. The

system will verify that the role is not already defined before creating it.

x

UserManagerimpl

TokenManipulator

UserManagementDB

OperationsLog

ORB
createRole—>
checkAccess
[no rights]
log
[no rights]
AccessDenied
createRole
o [duplicate role] | DuplicateRole

DuplicateRole

[database error]
CHART2Exception

[database error]

CHART2Exception

Success

log

Figure 203. UserManagementModule:CreateRole (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-313

04/17/01

3.19.2.4 UserManagementModule:DeleteProfileProperty (Sequence Diagram)

A user with proper functional rights can delete a profile property from the profile.

If the Profile being modifiedis L~ 1 s
the System Profile check to see -
if the user has 'ConfigureSystemProfile’

Profile

deleteProfileProperty——————>}

TokenManipulator

UserManagementDB

checkAcce:

[no rights]

OperationsLog

[no rights],

functional right. Otherwise, the profile
should belong to the user modifying it
and the user should have 'ConfigureSelf'
functional right.

T CHART2Exception

AccessDenied

log

deleteProfileProperty

[database error]

__[databaseerror]

CHART2Exception

og

Figure 204. UserManagementModule:DeleteProfileProperty (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-314

04/17/01

3.19.2.5 UserManagementModule:DeleteRole (Sequence Diagram)

A user with the proper functional rights may delete a role from the user database. The
system will verify that the role is not currently assigned to any users before deleting it.

x

UserManagerimpl
ORB

deleteRole

checkAccess

TokenManipulator

UserManagementDB

OperationsLog

[no rights]

[no rights]
AccessDenied

log

deleteRole

— [role in use]
RolelnUse

RolenUse

E— [invalid role]
InvalidRole

InvalidRole

[database érror]

_______ [database error]_______
[~ CHART2Exception

CHART2Exception]

Success

log

Figure 205. UserManagementModule:DeleteRole (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-315

04/17/01

3.19.2.6 UserManagementModule:DeleteUser (Sequence Diagram)

A user with the proper functional rights may delete a user from the user database. The
system will check if the user who is being deleted is currently logged in. If the user is
logged in, the administrator will be notified of this fact and will not be able to delete the
user. Note that the administrator may use the system to force the user to logout and then
delete the user. The check to see if the user is currently logged in is a warning to the
administrator and, due to its use of the trader, cannot be guaranteed to successfully check all
logins. If the user is deleted from the database while logged in, however, it will not affect

his/her current session. He/she will simply not be able to use the system subsequent to
logging out.

CosTrading.Lookup

OperationsLog

UserManagerimpl Profile
ORB
deleteUser——>
L create 4 TokenManipulator
creat TokenManipulator

checkAcce:

| OgerallunsCenlerl | UserLoqinSessionl UserManagementDB

[no rights].

o [noOTights]
AccessDenied

quer
“-i..| Getthe published
N operations centers
Check if the user

is logged in.

[for each Operations Center]
isUserLoggedin

[user logged in]_______
UserLoggedin

[if User Profile exists]
delete

X

deleteUser
UnknownUser

L [unknownuser]
UnknownUser

deleteUserProfile

[database error]

6""’6&2}3%? errt:_r],,,,,,, CHART2Exception
xception i

ucce:

log

delete

X

Figure 206. UserManagementModule:DeleteUser (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-316 04/17/01

3.19.2.7 UserManagementModule:GetSystemProfile (Sequence Diagram)

A user can get the system profile that is common to all the users in the CHART2 system.

@) UserManagerimpl

getSystemProfile————=>

P [unexpected error]__________
CHART2Exception

Profile

Figure 207. UserManagementModule:GetSystemProfile (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-317

04/17/01

3.19.2.8 UserManagementModule:GetUserProfile (Sequence Diagram)

A user with proper functional rights can get his or her own Profile.

UserManagerDB | POA I OperationsLog

% | UserManagerimpl | TokenManipulator
ORB
getUserProfle———
checkAcc
[no rights].
[no rights] log
AccessDenied
3 _[invalid username] ________
InvalidUserName
| _[if User Profile exists]_______|
Profile
getUserProfilePropertie:
[userdoesnot exist| |
s _[user does notexist]________} UnknownUser
UnknownUser
o [unexpected databaseerror]
error] {CHART2Exception
CHART2EXxception
ProfilePropertyList
e
activate_object(Profile)
Profile

Figure 208. UserManagementModule:GetUserProfile (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-318 04/17/01

3.19.2.9 UserManagementModule:GrantRole (Sequence Diagram)

A user with the proper functional rights may grant a role to a user. The user will not get
his/her new functional rights until he/she logs off and logs back on.

OperationsLog

o
O: RB: UserManagerimpl TokenManipulator UserManagementDB
grantRole
checkAccess
[no rights]
log
[no rights]
AccessDenied
grantRole
UnknownUser
S [unknown user] _________i
UnknownUser
S [duplicate role] _________ DuplicateRole
DuplicateRole invalidRole
[invalid role]
InvalidRole
[database error] [database error]
......... Al IO CHARTZ2E ti
< CHART2EXxception xception
Success
log

Figure 209. UserManagementModule:GrantRole (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-319

04/17/01

3.19.2.10 UserManagementModule:Initialize (Sequence Diagram)

Upon initialization the user manager module will create the objects which it is responsible
for serving, activates them using the POA, and exports them to the CORBA trading service.
After initialization this module is available for use by clients.

X

User itModule ServiceApplication | POA | CosTrading.Register
Service
tiali
getPOA"
—getTradingLookup—>}

——getTradingRegister——>

-getDBConnectionManager—=}

create g

fan UserManagerimpl

P
create J‘ Profile

-activate_object(Profile)

activate_object(L gerimply

Store Offer ID

Store the offer so AN
we can withdraw it later.

Figure 210. UserManagementModule:Initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-320 04/17/01

3.19.2.11 UserManagementModule:ModifyRole (Sequence Diagram)
A user with the proper functional rights may change the functional rights that belong to a
role. This will have the effect of changing the actions that users who have been granted that

role may perform. However, these changes will not be recognized until the user logs out
and logs back in.

X

ORB UserManagerimpl TokenManipulator UserManagementDB OperationsLog
—setRoleFunctionalRights—
checkAccess
[no rights]
log
[no rights]
AccessDenied

setRoleFunctionalRights

| [invalid funtional right]____ ~ T InvalidFunctionalRight
InvalidFunctionalRight
o finvalid role] nvalidRole
InvalidRole i
[database error] [database error]
PE— CHART2ExXception ™ CHARTZEExceonn
SuéceS>

log

Figure 211. UserManagementModule:ModifyRole (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-321 04/17/01

3.19.2.12 UserManagementModule:RevokeRole (Sequence Diagram)

A user with the proper functional rights may revoke a role that has previously been granted
to a user. This action will result in the user having a reduced set of functional rights, and
thus reduce the number of system activities the user may perform. The user will get his/her
new list of functional rights the next time he/she logs in.

X

ORB UserManagerimpl TokenManipulator UserManagementDB OperationsLog
revokeRole—>
checkAccess—>
[AccessDenied]
log

I [access denied]
AccessDenied

revokeRole
Unknov;/nUScu
IE— [unknown user] _______;
UnknownUser
IS [invalid role] ________ unvahcE Role
InvalidRole :
[database error]

< ldatabase errorl._._. CHART2Exception

CHART2EXxception :

Success

log

Figure 212. UserManagementModule:RevokeRole (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-322 04/17/01

3.19.2.13

UserManagementModule:SetProfileProperties (Sequence Diagram)

A user with the proper functional rights can store a set of properties in a profile.

X

ORB

‘ Profile ‘

TokenManipulator

UserManagementDB

If the Profile being modified is

the System Profile check to see

if the user has 'ConfigureSystemProfile’
functional right. Otherwise, the profile
should belong to the user modifying it

etProfileProperti

[no rights].

and the user should have ‘ConfigureSelf
functional right.

AccessDenied

[database error]

OperationsLog

[no rights]
log

etProfileProperti

Ida(aksase error]

CHART2Exception

CHART2EXxception

Figure 213. UserManagementModule:SetProfileProperties (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-323

04/17/01

3.19.2.14 UserManagementModule:SetRoleFunctionalRights (Sequence Diagram)

A user with proper functional rights may set the list of Functional Rights belonging to a

role. Note that at the completion of this sequence the role will only have the rights that were

set by this call.

o] UserManagerimpl
ORB

setRoleFunctionalRights:

TokenManipulator

checkAcce:

UserManagementDB

[no rights]
AccessDenied

[role does not exist]

[invalid role]
InvalidRole

[invalid functional right] i
InvalidFunctionalRight

[database error]
CHART2Exception

etRoleFunctionalRight:

[no rights]
lo

InvalidRole

[functional right not in functional right table] ..}

InvalidFunctionalRight

[unexpected database error]
i A

HART2EXxception

Uucce:

Figure 214. UserManagementModule:SetRoleFunctionalRights

R1B2 Servers Detailed Design Rev. 0

log

(Sequence Diagram)

3-324

04/17/01

3.19.2.15 UserManagementModule:SetUserPassword (Sequence Diagram)

A user with the proper functional rights may set the password that a user must specify in
order to log into the system. This action does not require that the administrator be able to
supply the users current password and, therefore, is restricted to administrative users. This
function is included to deal with situations where users forget their system password.

x

ORB UserManagerimpl TokenManipulator UserManagementDB OperationsLog
——setUserPassword———=>
checkAccess
[no rights]
log
[no rights]
AccessDenied
setUserPassword

[unknown user]
UnknownUser

UnknownUser

o [invalid password]
InvalidPassword

InvalidPassword:--=--=-==-==============ssmeeees

[databaise error]
S [database error]________: e
CHART2Exception CHART2Exception
Sudcha
log

Figure 215. UserManagementModule:SetUserPassword (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-325 04/17/01

3.19.2.16

UserManagementModule:SetUserRoles (Sequence Diagram)

A user with the proper functional rights may assign set of roles to a user. The user will not
get his/her new functional rights until he/she logs off and logs back on. Note that at the end

of this operation the user will have only the roles assigned by this operation.

X

UserManagerimpl

TokenManipulator

UserManagementDB

OperationsLog

ORB
setUserRoles
checkAccess
[no rights]
log
[no rights]
AccessDenied
setUsertRoles
__________ [unknown user]_____i UnknownUser
UnknownUser
[invalid role] InvalidRole
InvalidRole

CHART2Exception

[database error]

[database error]

CHART2Exception

Success

log

Figure 216. UserManagementModule:SetUserRoles (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0

3-326

04/17/01

3.19.2.17 UserManagementModule:Shutdown (Sequence Diagram)

The user management module will withdraw the user management object from the trader,
deactivates it from the POA and delete it.

>

Profile UserManagementDB UserManagerimpl

i | UserManagememModulel | ServiceApplication | | CosTrading.Register |
Service Application

shutdownmr——>
——getTradingLookup—>

———withdraw(UserManagerimpl)

getPOA

deactivate(UserManagerimply

"system profile"]
eactivate(Profile)

ar

delete

X

delete:

delete

X

ucce:

Figure 217. UserManagementModule:Shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-327 04/17/01

3.20 Utility

3.20.1 Classes

3.20.1.1 UtilityClasses (Class Diagram)

Identifier IdentifiableLookupTable MultiConverter MultiParseListener
DBUtility m_id Uniquelyldentifiable 10+
chartiD) .| put(dentifiable) multiToPlainText(muit) messageTx(text)
createldentiier() equals(Object obj) plainTextToMuli(text, formatter) fineJustification(justify)
escapeSingleQuotes(string):string areldentifiersEqual() hashCode() getld) m listener) newdine(pixelSkip)
exectteSQLStatement(conn, query, string, int):void byte[] getiD() getName() elements() newPage()
size() 1 pageDisplayTime(timeOn, timeOff)
unknownTag(tag)
javalang Runnable . parseComplete()
QueveableCommand MuldFormatter
DBConnectionManager runQ)
execute) 3 plainTextToMultitext)
interrupted
vg;‘ecase(:onnecucn() - Connection cia 'Q” (:C CommandQueue
v : SerTorengbytel
m_commands TokenManipulator
m_shutdown
(Type
java.util Properties addCommand(QueueableCommand cmd) TokenManipulator()
| addCommandOnTop(QueueableCommand cmd) | | createToken(userName, opCenteriD, opCenterName)
shutdown() optimize(operation, orgFiter)
getProperty() ServiceApplication -getNextCommand():QueueableCommand adg(usevTat&n, uperamn orgFilter)
add(userToken; oper:
setProperty() remove(userToken, nperamn orgFilter)
B remove(userToken, Operal ion)
start
S PG eanD usarToker
1 shudoun ServiceApplicationModule et bsiNama(sarTokery
DAy p0aName) P getUserName(userToken)
ServiceApplicationProperties B g Reister checkAccess(userToken, operation, orgFilter)
T radingL ookup(:Cos Tradng Loo checkAccess(userToken, o)
i ken, operation, orgFilter)
Ve PP i Token)
SenviceApplicationProperties(elOperaﬂnnsLog() OpevalmnsLug N oy o
Syt T vl e en
getProperties () DelauliProeries(java um Pmpemes printy!
getDefaultProperties() egisterObiect(obi,id, n publish) void
jetThreadModel()int regstarEvenC e EveniCharal name) void
etThreadPogiSize(int getlDGenerator():identifierGenerator
BucketSet
elDalabaseusevName() :String
jetDatabasePassword():String T m_comparables
getModuleNames():String[] 1
iNetCe add(comparable) FMS
DefaultServiceApplication remove(comparable)
1 removeAll
getElements int)
POA 2 1 size(
D prop ISEmpty() removeDMS
the_POAManager -writeOffers ToFile(String moduleName, int] offeriDs):boolean blankSign
-removeOffersFromFile(String moduleName):boolean stopPoling
activate_object(Servant obj) startPoling
deactivate_object(object_id) LogFile jﬂfﬂfdpp?“"’ lor
setMessage
PushEventSupplier x,\k??ggyasme getMessage
m_logFile Setpolinerval
m_creationDate getPollinterve
y factory, String ipplier supplier) _defFileN: ;::ggmxgzﬂmgﬂ
javalang.Thread getChannel():EventChannel; m_logLevel R

int;
setaxReconnectinterval(int seconds):voi
pus a):void;
disconnectPushConsumer(void):void;

logStack(Object of I7

log(Object obj, String message, int ey

vel)
, Sting message, int lvel, Trronabe

th)

selKeepDays(m
sarg o0 sethqFﬂeName(Smng fileName) Log
getKeepDaysf
fﬁr:(D)aveomon(boo\ean) n geﬂ_ogmewamo 1 1| m_instance
OpenLogFile()
sethgLeve\(mt level) logs message get():Log;
1 oetLogLevel) using o
deleteLogFiles(Date presentTime) logStack()
RecurringTimer CosEventChannelAdmin EventChannel
-long m_intervallilis
OperationsLog OpLogQueue ObjectRemovalListener
addTimerListener(TimerUpdatable):void for_consumers() 11
removeTimerL istener(TimerUpdatable):void | | for_suppliers() m_logQueueTime
<
OperationsLog(DBConnectionManager db) OpLogQueue() objectRemoved(Object obj):void;
Vector m_cmdStatusList shutdown():void 1 log() ut(-
CommandStatus m_masterStatus fushLog flush()
‘Slan m masterStatus Text 1 shutdown getFirstMessage()
jong m
long m_success 1
long m_failure 1
fong m_undetermined
- CorbaUtilities
aeCommendSiasivoid EventC
start(long intervalMilis):void o
top():voi 1 EventConsumer . opL
waitForCompletion():void PushEventConsumer String m_actionDesc findAIObjectsOfType(ORB, lookup, type):Objeci]]
Stringm_ actionType
m_event_channel verifyConnection() setinterval() String m_opCenter
m_pushConsumer connect() remove(consumer) Date m_tmeStamp
“hasC String m_user
PushEventConsumer(channel, pushConsumer) -verifyCe

Figure 218. UtilityClasses (Class Diagram)

R1B2 Servers Detailed Design Rev. 0

3-328

04/17/01

3.20.1.1.1 BucketSet (Class)

This class is designed to contain a collection of comparable objects. All of the objects
added to this collection must be of the same concrete type. Each element in the collection
has an associated counter that tracks how many times this element has been added. It is then
possible to get only the elements which have been added to the collection n times where n
is a positive integer value. This class is very useful for creating GUI menu’s for multiple
objects as it allows all objects to insert their menu items and then allows the user to get only
those items that all objects inserted.

3.20.1.1.2 CommandQueue (Class)

The CommandQueue class provides a queue for QueuableCommand objects. The
CommandQueue has a thread that it uses to process each QueuableCommand in a first in
first out order. As each command object is pulled off the queue by the CommandQueue’s
thread, the command object’s execute method is called, at which time the command
performs its intended task.

3.20.1.1.3 CommandStatusWatcher (Class)

This class is a utility that monitors one or more command status objects for completion. It
periodically checks each command status object’s completion code and maintains statistics
on the number of failures and successes. It provides a blocking method that waits for all
command status objects to complete.

3.20.1.1.4 CosEventChannelAdmin.EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and
consumers of information.

3.20.1.1.5 CorbaUtilities (Class)

This class is a collection of static CORBA utility methods that can be used by both server
and GUI for CORBA Trader service transactions.

3.20.1.1.6 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART Il system thread requiring database access gets a database
connection from the pool of connections maintained by this manager class. The connections
are maintained in two separate lists namely, inUseL.ist and freeList. The inUseL.ist contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor
thread that is started by the constructor. This connection monitor thread periodically checks

R1B2 Servers Detailed Design Rev. 0 3-329 04/17/01

the inuseL.ist to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

3.20.1.1.7 DBUtility (Class)

This class contains methods that allow interaction with the database.

3.20.1.1.8 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface. This class is
passed a properties file during construction. This properties file contains configuration data
used by this class to set the ORB concurrency model, determine which ORB services need
to be available, provide database connectivity, etc. The properties file also contains the
class names of service modules that should be served by the service application. During
startup, the DefaultServiceApplication instantiates the service application module classes
listed in the properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the
Trading Service. Each module must provide an implementation of the getOfferIDs method
and be able to return the offer ids for each object they have exported to the trader during
their initialization. The DefaultServiceApplication stores all offer IDs in a file during its
startup. Each module is expected to remove its offers from the trader during a shutdown. If
the DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up
old offers prior to initializing modules during its next start. This keeps multiple offers for
the same object from being placed in the trader.

3.20.1.1.9 EventConsumer (Class)

This interface provides the methods that any EventConsumer object that would like to be
managed in an EventConsumerGroup must implement.

3.20.1.1.10 EventConsumerGroup (Class)

This class represents a collection of event consumers that will be monitored to verify that
they do not lose their connection to the CORBA event service. The class will periodically
ask each consumer to verify its connection to the event channel on which it is dependent to
receive events.

3.20.1.1.11 FMS (Class)

This class represents the CHART Il system’s interface to the FMS SNMP manager. Most
methods included in this class have an associated method in the FMS SNMP Manager DLL
provided by the FMS Subsystem. The other methods in this class exist to provide easier
interface to the DLL. As an example, this class contains a blankSign method that actually
calls setMessage on the FMS Subsystem with the message set to blank and beacons off.

R1B2 Servers Detailed Design Rev. 0 3-330 04/17/01

3.20.1.1.12 FunctionalRightType (Class)

This class acts as an enumuration that lists the types of functional rights possible in the
CHART2 system. It contains a static member for each possible functional right.

3.20.1.1.13 IdentifiableLookupTable (Class)

This class uses a hash table implementation to store Identifiable objects for fast lookups.

3.20.1.1.14 Identifier (Class)

Wrapper class for a CHART? identifier byte sequence. This class will be used to add
identifiable objects to hash tables and perform subsequent lookup operations.

3.20.1.1.15 IdentifierGenerator (Class)

This class is used to create and manipulate identifiers that are to be used in Identifiable
objects.

3.20.1.1.16 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.20.1.1.17 java.lang.Thread (Class)

This class represents a java thread of execution.

3.20.1.1.18 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to
a stream or loaded from a stream. Each key and its corresponding value in the property list
is a string. A property list can contain another property list as its “defaults”; this second
property list is searched if the property key is not found in the original property list.

3.20.1.1.19 Log (Class)

Singleton log object to enable applications to easily create and utilize a LogFile object for
system trace messages.

3.20.1.1.20 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user
specified interval. The log files created by this class are used for system debugging and
maintenance only and are not to be confused with the system operations log that is modeled
by the OperationsLog class.

R1B2 Servers Detailed Design Rev. 0 3-331 04/17/01

3.20.1.1.21 MultiConverter (Class)

This class provides methods that perform conversions between the DMS MULTI mark-up
language and plain text. It also provides a method that will parse a MULTI message and
inform a MultiParseListener of elements found in the message.

3.20.1.1.22 MultiFormatter (Class)

This interface must be implemented by classes which convert plain text DMS messages to
MULTI formatted messages.

3.20.1.1.23 MultiParseListener (Class)

A MultiParseListener works in conjunction with the MultiConverter to allow an
implementing class to be notified as parsing of a MULTI message occurs. An exemplary
use of a MultiParseListener would be the MessageView window that will need to have the
MULTI message parsed in order to display it as a pixmap.

3.20.1.1.24 ObjectRemovalListener (Class)

This interface is implemented by objects that wish to be notified of objects being removed
from the system. This is typically used by objects that store a collection of other objects,
such as a factory, to allow them to remove objects from their collection when the object is
to be removed from the system.

3.20.1.1.25 OperationsLog (Class)

This class provides the functionality to add a log entry to the CHART 11 operations log. At
the time of instantiation of this class, it creates a queue for log entries. When a user of this
class provides a message to be logged, it creates a time-stamped OpLogMessage object and
adds this object to the OpLogQueue. Once queued, the messages are written to the database
by the queue driver thread in the order they were queued.

3.20.1.1.26 OpLogQueue (Class)

This class is a queue for messages that are to be put into the system’s Operations Log.
Messages added to the queue can be removed in FIFO order.

3.20.1.1.27 OpLogMessage (Class)

This class holds data for a message to be stored in the system’s Operations Log.

3.20.1.1.28 POA (Class)

This interface represents the portable object adapter used to activate and deactivate servant
objects.

R1B2 Servers Detailed Design Rev. 0 3-332 04/17/01

3.20.1.1.29 PushEventConsumer (Class)

This class is a utility class that will be responsible for connecting a consumer
implementation to an event channel, and maintaining that connection. When the
verifyConnection method is called, this object will determine if the channel has been lost
and will attempt to re-connect to the channel if it has.

3.20.1.1.30 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

3.20.1.1.31 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a
CommandQueue for asynchronous execution. Derived classes implement the execute
method to specify the actions taken by the command when it is executed. This interface
must be implemented by any device command in order that it may be queued on a
CommandQueue. The CommandQueue driver calls the execute method to execute a
command in the queue and a call to the interuppted method is made when a
CommandQueue is shut down.

3.20.1.1.32 RecurringTimer (Class)

A recurring timer is a thread that notifies each TimerUpdatable object that has been
registered on a specified period.

3.20.1.1.33 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

R1B2 Servers Detailed Design Rev. 0 3-333 04/17/01

3.20.1.1.34 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.20.1.1.35 ServiceApplicationProperties (Class)

This class provides methods that allow the DefaultServiceApplication to access the
necessary properties from the java properties configuration file. It also provides a default
properties file which can be retrieved by anyone holding a ServiceApplication interface
reference. This gives each installed service module the opportunity to load default values
before retrieving property values from the properties file.

3.20.1.1.36 TokenManipulator (Class)

This class contains all functionality required for user rights in the system. It is the only code
in the system that knows how to create, modify and check a user’s functional rights. It
encapsulates the contents of an octet sequence that will be passed to every secure method.
Secure methods should call the checkAccess method to validate the user. Client processes
should use the check access method to verify access and optimize to reduce reduce the size
of the sequence to only those rights which are necessary to invoke the secure method. The
token contains the following information. Token version, Token ID, Token Time Stamp,
Username, Op Center ID, Op Center IOR, functional rights

3.20.1.1.37 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 Servers Detailed Design Rev. 0 3-334 04/17/01

1.1.1.1 UtilityClasses2 (Class Diagram)

- LogEntry
LogFilter DatabaseLogger
TimeStamp m_timestamp
TimeStamp m_startDate Identifier m_eventiD
TimeStamp m_endDate * 1 1 * | string m_text
Identifier m_eventiD DatabaseLogger(tableName) string m_author
string m_opCenterName addEntry(logEntry) : void string m_opCenterName
string m_containsText checlExpiredEntries() : void
getEntries(filter, maxCount) : Loglterator equals() : boolean
factory createLogFilter() : LogFilter shutdown() : void factory createLogEntry() : LogEntry
hashCode() : int
1 matchesFilter(LogFilter filter) : boolean
1
Logtlterator
long m_timeOfLastUse Constructor sets m_refCount to 1.
Additional references recorded by LogEntryCache
getMoreEntries(long maxCount) : LogEntryList with incdRefCount() and decrRefCount()
destroy():void N
LogEntryCache deletes a CachedLogEntry from
hashtable when its refCount hits 0.
N1
N : - CachedLogEntry
m_keys is an ordered array of Loglteratorimpl LogEntryCache
slots in the cache for the LogEntries * 1 m_logEntry
which match the filter. Each key Object[] m_keys java.util. Hashtable hashTable 1 *| m_refCount
is used to extract the int m_nextEntry >
LogEntry from the LogEntryCache. addEntry(LogEntry entry) : Object decrRefCount() : void
m_nextEntry indexes into array addEntry(LogEntry entry) getEntry (Object key) : LogEntry equals() : boolean
of m_entrySlots, pointing to the getEntry() : LogEntry
next entry to extract. getRefCount() : int
hashCode() : int
incrRefCount() : void

Figure 219. UtilityClasses?2 (Class Diagram)

3.20.1.1.38 CachedLogEntry (Class)

This class represents a reference-counting object stored in a memory-efficient
LogEntryCache. The object of this class encapsulates the stored log entry and adds a
reference count.

3.20.1.1.39 DatabaselLogger (Class)

This class represents a generic database logger that can be used to log and retrieve
information from the database. This class also provides a mechanism for the user to filter
and retrieve logs that meet specific criteria.

3.20.1.1.40 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general
Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic
Event actions (opening, closing, etc.) are logged in the Communications Log as well as in
the history of the specific Traffic Event.

R1B2 Servers Detailed Design Rev. 0 3-335 04/17/01

3.20.1.1.41 LogEntryCache (Class)

The LogEntryCache caches log entries returned from a database query which are in excess
of the requestor-specified maximum number of entries to return at one time. The
Loglterator stores references to the LogEntry objects thus cached, and requests additional
objects as needed. The LogEntryCache uses reference counting to prevent storing duplicate

copies of LogEntry objects, and it deletes LogEntry objects when they are no longer
needed.

3.20.1.1.42 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the
Communications Log. The caller would create an object of this type specifying the criteria
that each log entry must match in order to be returned.

3.20.1.1.43 Loglterator (Class)

This class represents an iterator to iterate through a collection of log entries. If a retrieval
request results in more data than is reasonable to transmit all at once, one clump of entries
is returned at first, together with a Loglterator from which additional data can be requested,
repeatedly, until all entries are returned or the user cancels the operation.

3.20.1.1.44 Loglteratorimpl (Class)

The LoglteratorImpl implements the Loglterator interface; that is, it does the actual work
which clients can request via the Loglterator interface. The LoglteratorImpl stores data
relating to cached LogEvents for a single retrieval request, and implements the client
request to get additional clumps of data pertaining to that request.

R1B2 Servers Detailed Design Rev. 0 3-336 04/17/01

3.20.2 Sequence Diagrams

3.20.2.1 DatabaselLogger:getEntries (Sequence Diagram)

E Databaselogger LogEntryCache Hashtable
getEntries(maxCount)>}
create LogEntryList
"Request data
matching filter
from database"
_[if no matching data] _
LogEntryList (empty)
[*for each create LogEntry
row returned,
until maxCount i
or done] add LogEntry to LogEntryList
[if done] i
LogEntryList
creale Loglteratorimpl
create LO; Entr
addEntry(LogEntry) ;
——addEntry(LogEntry)—>}
[*for each ;
row returned N
i 3 i _[if not currently cached] i | CachedLogEntry
until no more] create >
i [if not currently (:a(:hed]9
put()
[if already cached
incrRefCount
- LogEntryList &
Logiterator Really the
.| Firstclump of entries is returned, plus an CachedLogEntry,
™| iterator from which requestor can get more. cast as an Object,
Later, when and known only as
ready for more a "key" by the
= Loglterator
= getMoreEntries(maxCount) ,.
LogEntryList [<oreate”
getEhtry(key)
This LogEntry i s
is LogEntry is
i CachedLogEntry
retrieved i<—CachedLogEntry—; CachedLogEnt
[*maxCount e
b times, or LogEntry ~—_getEntry()
Next clump of LogEntry until no more]
objects is returned. If maxCount ——decrRefCount()
entries are returned, caller can P
gy . if refCount ==0]
call getMoreEntries() again. remove() —>
L _add LogEntry__i
~ to LogEntryList
LogEntryList

When LogEntryList comes back with less than maxCount entries, user should call destroy() on the iterator, see
CommLogModule::destroy for details. If user fails to call destroy, iterator will be destroyed by cleanup thread after
a period of disuse.

Figure 220. DatabaselLogger:getEntries (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-337 04/17/01

3.20.2.2 DictionaryWrapper:checkForBannedWords (Sequence Diagram)

This diagram shows processing performed by the DictionaryWrapper that is representative
of all methods that it duplicates in the Dictionary interface. When a method is called that is
to be delegated to a system dictionary, the DictionaryWrapper first attempts to use the
dictionary references (if any) that it has already discovered during a previous method
invocation. If no references exist (this is true for the first usage of the wrapper) or if all
existing references return CORBA failures when used, the DictionaryWrapper queries the
trader for all Dictionaries in the system and then attempts to use each until a “live”
reference is found or all of the newly discovered references return CORBA failures when
used.

A timestamp is used to prevent a flurry of trader queries when no Dictionary objects are
available. Prior to doing a trader query to (re)discover dictionaries, the DictionaryWrapper
makes sure that at least a minimum amount of time has elapsed since the last time it tried to
find a dictionary. The use of synchronization around the discovery process also helps to
prevent a flood of trader queries.

R1B2 Servers Detailed Design Rev. 0 3-338 04/17/01

i DMSMessage DictionaryWrapper Corbautilities Dictionary m_lock

—validateMessageContents—>

get()
checkForBannedW ords
checkForBannedWords
[*while more refs in vector
and checkForBannedWords
has thrown a CORBA
exception] [CORBA exception caught]
“remove reference from
vector"

[Dictionary.checkForBannedWords If Dictionary.checkForBannedW ords is
did not throw a CORBA able to be called, the results are returned

exception] to the user and this method is finished.

results Otherwise, if the minimum time has elapsed

since the last time it tried, the method will
try to find a different DictionaryRef to use.

synchronized

[current time minus
,,,,,,,,,,,,, discovery timestamp.
less than min discovery period]
CHART2EXxception

findAllObjectsOfType——=}

“Narrow each object
returned to a Dictionary
and store in vector”

"set discovery timestamp”

“"end synchronization™

checkForBannedWords

[*while more refs in vector
and checkForBannedWords
has thrown a CORBA

exception] [CORBA exception caught]

“remove reference from

vector"
[—

[Dictionary.checkForBannedWords
did not throw a CORBA
exception]
results

[All refs threw CORBA
exception]

CHART2Exception

Figure 221. DictionaryWrapper:checkForBannedWords (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-339 04/17/01

Acronyms

The following acronyms appear throughout this document:

API Application Program Interface

BAA Business Area Architecture

CORBA Common Object Request Broker Architecture
DBMS Database Management System

DMS Dynamic Message Sign

DTMF Dual Tone Multiple Frequency

EORS Emergency Operations Reporting System
FMS Field Management Station

GUI Graphical User Interface

HAR Highway Advisory Radio

IDL Interface Definition Language

ITS Intelligent Transportation Systems

LATA Local Access and Transport Areas

NTCIP National Transportation Communications for ITS Protocol
OMG Object Management Group

ORB Object Request Broker

POA Portable Object Adapter

R1B2 Release 1, Build 2 of the CHART Il System
TTS Text To Speech

UML Unified Modeling Language

R1B2 Servers Detailed Design AC-1 04/17/01

References

CHART Il Release 4 Interim BAA Report, document number M361-BA-004R0, Computer
Sciences Corporation and PB Farradyne.

CHART Il System Requirements Specification Release 1 Build 2, document number M361-RS-
002R1, Computer Sciences Corporation and PB Farradyne.

R1B2 High Level Design, document number M362-DS-005R0, Computer Sciences Corporation
and PB Farradyne.

FMS R1B1 High Level Design, document number M303-DS-001R0, Computer Sciences
Corporation and PB Farradyne.

CHART II to Field Management Station (FMS) Interface Control Document (ICD), document
number M361-1D-001R0, Computer Sciences Corporation and PB Farradyne.

The Common Object Request Broker: Architecture and Specification, Revision 2.3.1, OMG
Document 99-10-07

Martin Fowler and Kendall Scott, UML Distilled, Addison-Wesley, 1997

TELE-SPOT 3001 Sign Controller Communications Protocol, document number 750208-040
v2.3, T-S Display Systems Inc., 1995

Functional Specification for FP9500ND — MDDOT Display Control System, document number
A316111-080 Rev. A6, MARK 1V Industries Ltd., 1998.

Maintenance Manual for the FP1001 Display Controller, document number 316000-443 Rev. E,
Ferranti-Packard Displays, 1987

FP2001 Display Controller Application Guide, document number A317875-012 Rev. 8, F-P
Electronics, 1991

Engineering Specification - Brick Sign Communications Protocol, Rev. 1, ADDCO Inc., 1999.
PCMS Protocol version 4, document number 32000-150 Rev. 5, Display Solutions, 2000

BSC Protocol Specification (Data Link Protocol Layer), v. 1.3, Fiberoptic Display Systems Inc.,
1996

Sylvia Variable Message Sign, Command Set 9403-1, v. 1.4, Fiberoptic Display Systems Inc.,
1996

R1B2 Servers Detailed Design REF-1 04/17/01

2.5 Mile AM Travelers Information Station Instruction Manual For: Maryland State Highway
Administration, Information Station Specialists.

Technical Practice RC-2A Remote Touch-Tone On/Off Industrial Controller, Viking Electronics
Inc., August 1993.

R1B2 Servers Detailed Design REF-2 04/17/01

Appendix A — Functional Rights

This table lists the functional rights that exist in the CHART Il system and the operations to
which they grant access.

Functional Right Required Operation Organization
Filterable

BasicOperations Add Comm Log entries No

Get Comm Log entries No
ConfigureDMS Add DMS Yes

Remove DMS Yes

Set DMS Configuration Yes
ConfigureDMS or ViewDMSConfig Get DMS Configuration Yes
ConfigureHAR Add HAR Yes

Add SHAZAM Yes

Remove HAR Yes

Remove SHAZAM Yes

Set HAR Associated with a Yes

Notifier(DMS or SHAZAM)

Set HAR Configuration Yes

Set HAR Message Notifier(DMS or|Yes
SHAZAM) Direction

Set SHAZAM Configuration Yes
ConfigureHAR or ViewHARConfig Get HAR Configuration Yes
Get SHAZAM Configuration Yes
ConfigureSelf Get User Profile No
Set User Password No
ConfigureSelf, ConfigureSystemProfile|Delete Profile Properties No
Set Profile Properties No
ConfigureTrafficEvent Add Traffic Event Log Entry No
Associate Event No
Change Event type No

Check if Congestion Event is a No
Recurring event

Close Traffic Event No
Override Incident Lane Open No
Close Time

Override Traffic Event Closure No
Time

Set Congestion Event as a No
Recurring event

Set Incident Road Conditions No
Set Incident Type No

R1B2 Servers Detailed Design Al 04/17/01

Functional Right Required Operation Organization
Filterable
Set Incident Vehicle Data No
Set Roadway Event lane No
configuration
Set Traffic Event as Primary event |No
Set Traffic Event as Secondary No
event
ConfigureUsers Change User Password No
Create Role No
Create User No
Delete Role No
Delete User No
Grant Role No
Revoke Role No
Set Role Functional Rights No
Set User Roles No
Maintain DMS Blank DMS Yes
Perform DMS Pixel Test Yes
Perform DMS Test Yes
Poll DMS Yes
Reset DMS Controller Yes
Set DMS Message Yes
MaintainHAR Blank HAR Yes
Delete HAR Slot Message Yes
Refresh SHAZAM Yes
Reset HAR Yes
Set HAR Message Yes
Set HAR Transmitter Off Yes
Set HAR Transmitter On Yes
Set SHAZAM Beacons Off Yes
Set SHAZAM Beacons On Yes
Setup HAR Yes
Store HAR Slot Message Yes
Manage Services Shutdown Service No
ManageDeviceComms Put a device in Maintenance Mode |Yes
Put a device Online Yes
Take a device Offline Yes
ManageDictionary Add a list of Approved Wordsto [No
Dictionary
Add a list of Banned Words from |No

Dictionary

R1B2 Servers Detailed Design

A-2

04/17/01

Functional Right Required Operation Organization
Filterable

Remove a list of Approved Words [No
from Dictionary
Remove a list of Banned Words [No
from Dictionary

ManageDictionary or ViewDictionary |Get Approved Words from No
Dictionary
Get Banned Words from No
Dictionary

ManageUserLogins Force Logout No
Force Logout No

ModifyMessageLibrary Create Message Library No
Create Stored Message No
Remove Library No
Remove Stored Message No
Remove Stored Message No
Set Message associated with No
Stored Message
Set Message Library Name No
Set Stored Message Data No

ModifyPlans Add Plan Item No
Create Plan No
Remove Plan No
Remove Plan Item No
Remove Plan Item No
Set Plan Item Data No
Set Plan Item Name No
Set Plan Name No

Must pass the token of the user Change User No

logging out Logout User No

RespondToTrafficEvent Add a message to Arbitration No
Queue
Add Resource Response No
Participation
Add Response Plan Item No
Execute Response Plan Item No
Execute Traffic Event Response [No
Override Organization responded |No
time
Override Resource arrival time No
Override Resource departure time |No

R1B2 Servers Detailed Design

A-3

04/17/01

Functional Right Required Operation Organization
Filterable

Remove a message from No
Arbitration Queue
Remove Response Device No
Remove Response Participation [No
Remove Response Plan Item No
Set Organization notification. No
Set Organization participation No
response to Event
Set Resource arrived on scene No
Set Resource departed from No
scene
Set Response Plan Item data No
Set Response Plan Item No
description

RespondToTrafficEvent, Get Response Plan Item data No

ViewTrafficEventData

SetHARMessage Activate HAR Message Notice Yes
Deactivate HAR Message Notice |Yes
Set HAR message and Notifiers |Yes

TransferAnySharedResource Clear Controlling Operations Yes
Center
Set Controlling Operations Center |Yes
Transfer Shared Resources Yes

ViewUserConfig or ConfigureUsers Get Role Functional Rights No
Get Roles No
Get User Roles No
Get Users No

ViewUserLogins Get Login Sessions No

R1B2 Servers Detailed Design

A-4

04/17/01

Appendix B — Glossary

Action Event

Approved Word

Arbitration Queue

Banned Word

Comm Log

Congestion Event

CORBA Event

CORBA Trader

Data Model

Dictionary

A Traffic Event related to the disposition of actions in response
to device failures and non-blockage events (e.g. signals, debris,
utility, and signs).

A word that is known to the system and has been approved for
use when communicating with the motoring public via a
messaging device. The dictionary will suggest words to the
operator when it encounters a word that has not been previously
approved.

A prioritized queue containing messages for display or broadcast
on a traveler information device.

A word that may not be used when communicating with the
motoring public via a messaging device such as a HAR or DMS.

A collection of information received from any source that
requires no action.

A Traffic Event related to roadway congestion situations.
Congestion Events may be recurring or non-recurring.

A CORBA mechanism using which different CHART?2
components exchange information without explicitly knowing
about each other.

A CORBA service that facilitates object location and discovery.
A server advertises an object in the Trading Service based on the
kind of service provided by the object. A client locates objects of
interest by asking the Trading Service to find all objects that
provide a particular service.

An object repository that keeps track of changes to the various
objects in the repository and informs about these changes as they
occur, to observers who are interested in the objects in the
repository. A Data Model identifies the subject in a
Subject/Observer design pattern.

A collection of banned and approved words.

R1B2 Servers Detailed Design

B-1 04/17/01

Deployable Resource

DMS

DMS Stored Message Item

Emergency Operations
Reporting System

Factory

FMS

Functional Right

Graphical User Interface

GUI Wrapper Object

HAR

HAR Message

HAR Message Clip

Any resource that can be deployed to the scene in order to
provide assistance during a traffic event.

A Dynamic Message Sign that can be controlled by one
Operations Center at a time.

A plan item that is used to set a specific message on a specific
DMS when added to a Traffic Event response plan and activated.

A system external to CHART Il that (among other things) keeps
track of planned roadway closures and permits.

A CORBA object that is capable of creating other CORBA
objects of a particular type. The newly created object will be
served from the same process as the factory object that creates it.

Field Management Station through which the CHART 11 system
communicates with the devices in the field.

A privilege that gives a user the right to perform a particular
system action or related group of actions. A functional right may
be limited to pertain only to those shared resources owned by a
particular organization or can pertain to the shared resources of
all organizations.

Part of a software application that provides a graphical interface
to its user.

A GUI wrapper object is one that wraps a server object to
provide it with GUI functionality such as menu handling. It also
helps in performance enhancement by caching data locally
thereby avoiding network calls when not necessary.

A Highway Advisory Radio which can be controlled by one
Operations Center at a time.

A message which is capable of being stored on a HAR. It is
composed of a message header, body and footer.

A message clip is part of a HAR message that could be a header

R1B2 Servers Detailed Design

B-2 04/17/01

HAR Message Slot

Incident Event

Installable Module

Lane Closure

Message Library

Navigator

Object Discovery

Operations Center

Operator

Organization

or body or footer. It can be stored either as a text or in one of the
binary forms (WAV, MP3 etc).

A message slot is one of the numbered message stores inside the
HAR device that can be used to store pre-fabricated messages
useful for quick retrieval and playing.

A Traffic Event that is entered by an Operator in response to one
of the following types of incidents: Disabled in roadway,
Personal injury, Property damage, Fatality, Debris in roadway,
Vehicle fire, Maintenance, Signal call, Police activities, Off-road
activity, Declaration of emergency, Weather, or Other.

A plugable GUI module that provides a specific function, which
when registered with the GUI is called on to initialize itself at the
time of GUI startup and shut down at the time of GUI shut down.

The closure of one or more roadway lanes resulting from a
Traffic Event.

A collection of stored messages that can be displayed on the
DMS or broadcast on a HAR.

A Navigator is a GUI window that contains a tree on the left-
hand side and a list on the right hand side. Tree elements
represent groups of objects and the list on the right hand side
represents the objects in the selected group.

A GUI mechanism in which the client periodically asks the
CORBA Trading Service to find objects of those types that are
of interest to the GUI, such as DMS, HAR, Plan etc.

A center where one or more users may log in to operate the
CHART 11 system. Operations centers are assigned responsibility
for shared resources that are controlled by users who are logged
in at that operations center.

A CHART Il user that works at an Operations Center.

An organization is an agency that participates in the CHART II
system and owns one or more Shared Resources.

R1B2 Servers Detailed Design

B-3 04/17/01

Plan

Plan lItem

Response Plan

Response Plan Item

Role

Safety Message Event

Service Application

Service Application Module

Shared Resource

SHAZAM

A collection of plan items that can be added to the response plan
of a traffic event as a group.

An action in the system that can be set up in advance to be
activated one or more times in the future. Plan items must be
contained in a plan. Specific types of plan items exist for specific
functionality. A plan item may be copied to a traffic event
response plan and subsequently activated.

A collection of response plan items created in response to a
traffic event that can be activated as a group..

An action in the system that can be set up in response to a traffic
event. Response plan items must be contained in a response plan.
Specific types of response plan items exist for specific
functionality. A response plan item carries out its specific task
when activated

A Role is a collection of functional rights that a user may
perform. The roles that pertain to a particular user for a particular
login session are determined when he/she logs into the system.

A Traffic Event that is entered by an Operator to display and/or
broadcast safety messages.

A software application that can be configured to run one or more
service application modules and provides them basic services
needed to serve CORBA objects.

A software module that serves a related group of CORBA
objects and can be run within the context of a service
application.

A resource that is owned by an organization. A user may be
granted access to a shared resource owned by an organization
through the functional rights scheme.

A device used to notify the traveling public of the broadcast of a
HAR message.

R1B2 Servers Detailed Design

B-4 04/17/01

Sign

Stored Message

System Profile

Token

Traffic Event

Transferable Shared
Resource

User

User Profile

Weather Service Alert
Event

see DMS

A message that may be broadcast on a HAR or displayed on a
DMS.

Information used to define the configuration of the system.
Properties stored in the system profile apply to all users when
they are logged in.

A token or access token is a security blob that encloses
information about a user and the functional rights associated
with the user. All secured CHART?2 operations require a token to
be passed to it and based on the functional rights found in a
token a user is allowed or denied access.

A traffic event represents a roadway event that is affecting traffic
conditions and requires action from system operators.

A shared resource that can be transferred from one operations
center to another by a user with the appropriate functional rights.

A user is somebody who uses the CHART Il system. A user can
perform different operations in the system depending upon the
roles they have been granted.

A set of information used to correctly configure an individual
user’s GUI on startup.

A Traffic Event that is entered by an Operator in response to
National Weather Service advisories.

R1B2 Servers Detailed Design

B-5 04/17/01

